
Software Design &
Programming Techniques

Prof. Dr-Ing. Klaus Ostermann

Functional Programming
Patterns

Slides are in part adapted from a talk by Scott Wlaschin

2

OO design vs FP design J

asdf

3

Functional Design

� Core Principles
�  Functions
� Types
� Composition

�  Functions as Values
� Monads
� Maps
� Monoids and folds

4

Functions are Values!

5

Functions are Values!

Functions are “stand alone” and not associated to a class

They are “first class”: They are values, just like
numbers or strings, and can hence be passed to

or returned from other functions

6

Functions are values!

� A small Haskell session…

> let x = 1

> let add1 y = y+1

> let add1 = \y -> y+1

> let twice f x = f (f x)

> twice add1 x
3

Same keyword to bind names for all values,
including functions

Lambda notation

Higher-Order functions

7

Composition everywhere!

8

Composition everywhere!

.

Function composition operator
(is itself a function)

9

Functions scale!

“Functions in the small, objects in the large”?

No. Due to composability, functions
can be used on every abstraction level!

10

Types are not classes

11

What are types?

� Types are “sets” of values
�  (we use quotes around “set” because it may not strictly be a set as

defined in set theory)
�  If an expression e has type T, then this is a prediction that evaluation of e

yields a value that is a member of the “set” T.
�  Function types denote mathematical functions (recall that a mathematical

function is also a set, namely a relation that is deterministic, …)

�  In FP, a type describes the structure of the set it denotes

�  In most OO languages, a type is a class name

12

Nominal vs Structural typing

�  In FP, a type describes the structure of the set it denotes
� Two types are equivalent if they have the same structure
� This is called “structural typing”

�  In most OO languages, a type is a class name
� Two types are equivalent if they are identical
� This is called “nominal typing”

� Example: The types A and B are different in Java (a nominal system)

� Example: The types A and B are equivalent in Haskell (a structural
system)

class A { int x; int y }
class B { int x; int y }

type A = (Int,Int)
type B = (Int,Int)

13

Composition of Types

� Types can be composed, too

� Standard type composition operators: Products and Sums

� Sum types correspond to disjoint unions

� Product types correspond to Cartesian products

� Examples for sum types:
�  Either type in Scala or Haskell
� E.g., type Bool = Either Unit Unit

 type Maybe a = Either a Unit
� Sum types destructed via pattern matching

� Some languages also feature non-disjoint unions
� Union types in C
� Not type-safe

14

Composition of Types

� Examples for Product types
� Tuples : (1,”hi”) has type (Int,String)
� Records: (x = 5, y = 7) has type (x: Int, y: Int)

15

Products and Sums together:
Algebraic data types

� E.g. in Haskell:

data Color = Red | Green | Blue

data Point = Point Float Float

data UniversityPerson = Professor String | Student Int String

16

Data of unbounded size via recursion

� With products and sums, we can only construct data types of fixed size
� To have things like lists, we need some form of recursion

� One way: Fixed point operator on the type level

data IntListF x = EmptyList | Cons Int x

type IntList = Fix IntListF

� More common way: Nominal types with recursion
� Algebraic data types allow recursion!

data IntList = EmptyList | Cons Int IntList

17

Algebraic data types vs. OO classes

�  In OO languages, product types are formed by fields of classes
� Sum types are expressed via subtyping

Example:
data IntList = EmptyList | Cons Int IntList

can be expressed as

abstract class IntList

case class EmptyList() extends IntList
case class Cons(x: Int, rest: IntList) extends IntList

Important difference: Sum types in FP are usually closed, i.e., non-
extensible, whereas sums expressed via subtyping are open

This is related to the “expression problem” we discussed earlier

18

Datatype-Generic Programming

� Observation: Many standard functions can in principle be derived from
the shape of an algebraic data type
� Equality of two types, various traversals, “folds”

� But we need to repeat those definitions for every datatype

� Way out: Datatype-generic programming
� We can’t address the topic in detail, see

www.cs.ox.ac.uk/jeremy.gibbons/publications/dgp.pdf
for a good tutorial

� Common idea: Express datatypes via “polynomial functors”
�  Functor: Function on the type level that comes with a “map” function
� Polynomial functor: Type constructors that can show up in the functor

restricted to product and sum operators
� E.g., instead of writing

data ListF x = EmptyList | Cons Int x
we can write
type ListF X = 1 + (Int * X)
(1 is something like Unit, 0 is something like Nothing)

19

Polynomial functors

�  Using polynomial functors, standard data type isomorphisms coincide with
standard identities known from basic algebra:

1 * 1 = 1
1 + 0 = 0 + 1 = 1
1 * 0 = 0
A * B = B * A
A * (B + C) = A * B + A * C
1 + 1 = 2

�  Even standard rules for derivation of polynoms can be interpreted in the

polynomial functor world

F(X) = X * X * X = X^3
F’(X) = 3 * X * X = 3 * X^2 = (X^2 + X^2 + X^2)
F(X) describes containers with three elements.
F’(X) describes the types of containers with three elements with a “hole”:
Either the left element is missing, or the middle one, or the right one
For more on this topic, consider
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/

20

FP pattern: Make effects explicit

�  “Effect”: Things a function does in addition to (or instead of) computing a
value
� Example: Non-termination, I/O, Mutation of variables

�  Idea: Type signatures should not “lie”
�  If a function signature promises to map every string to an integer, it

should not sometimes return abnormally with an exception

� Example: In FP, an integer parsing function string2int would have a type
like:
string2int : String -> Maybe Int

instead of

string2int: String -> Int

and sometimes throwing an exception

21

What’s good about explicit effects?

� Making effects explicit reduces or eliminates the dependence of the
program result on the order of evaluation

Example:

val myfunc = try {
 fun (x: String) => if … then throw SomeException …
} catch (SomeException e) …

The exception handler won’t work if the exception is thrown in a part of the
code whose evaluation is deferred, e.g., by being inside a function body

22

Explicit effects

� Explicit effects are only a “design pattern” in some FP languages; in other
languages they are (partially) enforced by the type system
� Haskell, Clean, Idris, …
�  For instance, Haskell enforces explicit mutation and I/O, but does not

enforce termination

�  For instance, a Haskell function of type Int -> Int will, given input x
� Either diverge on x
� Or return another integer y but not perform any mutation, not print

something on the screen, not write something to your harddrive, not
communicate on the network

� There are several advanced FP “patterns” for dealing with explicit effects
in an elegant way
� Monads, effect types, algebraic effects, …
� Not in the scope of this lecture

23

Back to basic FP…

� Meta-Pattern in FP: “We can parameterize/abstract over anything”

� Concrete instance of the meta-pattern: Parameterize over functions
� Example: FP programmers hate this kind of redundancy

24

Parameterize all things…

25

