Software Desigh &

Programming Techniques

Functional Programming
Patterns

Prof. Dr-Ing. Klaus Ostermann

Slides are in part adapted from a talk by Scott Wlaschin

- 0000001
OO design vs FP desigh ©

OO pattern/principle FP equivalent

» Single Responsibility Principle * Functions

* Open/Closed principle * Functions

* Dependency Inversion * Functions, also
Principle

* Interface Segregation * Functions
Principle

* Factory pattern * You will be assimilated!

* Strategy pattern * Functions again

* Decorator pattern * Functions

* Visitor pattern * Resistance is futile!

.
Functional Design

» Core Principles
» Functions
» Types
» Composition
» Functions as Values
» Monads
» Maps
» Monoids and folds

Functions are Values!

Functions are Values!

Function

® E o m \

Functions are “stand alone” and not associated to a class

They are “first class”: They are values, just like
numbers or strings, and can hence be passed to
or returned from other functions

-]
Functions are values!

» A small Haskell session...

> letx =1 Same keyword to bind names for all values,
including functions

> letaddly = y+1
Lambda notation

> let addl = \y -> y+1

> let twice f x = f (f x) Higher-Order functions

> twice add1l x
3

Composition everywhere!

Composition everywhere!

Function composition operator
(is itself a function)

Function 1 X Function 2 4
apple -> banana \ 3 \ 9 banana -> cherry
@ m m \%r,I [| \I m m ‘

New ﬂmctuon
NewFunctlon m
O W~ [Me

Can't tell it was bwilt from
smaller functions!

Functions scale!

“Functions in the small, objects in the large”?

No. Due to composability, functions
can be used on every abstraction level!

Low-level operation Low-level operation Low-level operation Low-level operation
string e string —3| > —>| > = =
Service Service Service S e rvi Ce

s D e D o
Address Validation

—>| AddressValidator |gRoo

Use-case

Use-case Use-case Use-case

ChangeProfile ChangeProfile
Reques®| UpdateProfilData (e g I . I e I

\ 4

Web application

Hep | 5——5 |Hup
Request Response
—_—D —>

>—
i 9

Types are not classes

10

. 7]
What are types?

» Types are “sets” of values

» (we use quotes around “set” because it may not strictly be a set as
defined in set theory)

» If an expression e has type T, then this is a prediction that evaluation of e
yields a value that is a member of the “set” T.

» Function types denote mathematical functions (recall that a mathematical
function is also a set, namely a relation that is deterministic, ...)

» In FP, a type describes the structure of the set it denotes

» In most OO languages, a type is a class name

11

.7
Nominal vs Structural typing

» In FP, a type describes the structure of the set it denotes
» Two types are equivalent if they have the same structure
» This is called “structural typing”

» In most OO languages, a type is a class name
» Two types are equivalent if they are identical
» This is called "nominal typing”

» Example: The types A and B are different in Java (a nominal system)

class A{intx; inty }
classB{ intx; inty }

» Example: The types A and B are equivalent in Haskell (a structural

system) type A = (Int,Int)
type B = (Int,Int)

12

.7
Composition of Types

» Types can be composed, too

» Standard type composition operators: Products and Sums
» Sum types correspond to disjoint unions

» Product types correspond to Cartesian products

» Examples for sum types:
» Either type in Scala or Haskell

» E.g., type Bool = Either Unit Unit
type Maybe a = Either a Unit

» Sum types destructed via pattern matching

» Some languages also feature non-disjoint unions
» Union types in C
» Not type-safe

13

.7
Composition of Types

» Examples for Product types
» Tuples : (1,"hi”) has type (Int,String)
» Records: (x =5, y =7) has type (x: Int, y: Int)

14

Products and Sums together:
Algebraic data types

» E.g. in Haskell:

data Color = Red | Green | Blue

data Point = Point Float Float

data UniversityPerson = Professor String | Student Int String

15

- /]
Data of unbounded size via recursion

» With products and sums, we can only construct data types of fixed size
» To have things like lists, we need some form of recursion

» One way: Fixed point operator on the type level

data IntListF x = EmptyList | Cons Int x

type IntList = Fix IntListF

» More common way: Nominal types with recursion
» Algebraic data types allow recursion!

data IntList = EmptyList | Cons Int IntList

16

Algebraic data types vs. OO classes

» In OO languages, product types are formed by fields of classes
» Sum types are expressed via subtyping

Example:
data IntList = EmptyList | Cons Int IntList

can be expressed as
abstract class IntList

case class EmptyList() extends IntList
case class Cons(x: Int, rest: IntList) extends IntList

Important difference: Sum types in FP are usually closed, i.e., non-
extensible, whereas sums expressed via subtyping are open

This is related to the “expression problem” we discussed earlier

17

Datatype-Generic Programming

» Observation: Many standard functions can in principle be derived from
the shape of an algebraic data type

» Equality of two types, various traversals, “folds”
» But we need to repeat those definitions for every datatype

» Way out: Datatype-generic programming

» We can’t address the topic in detail, see
WWWw.cs.ox.ac.uk/jeremy.gibbons/publications/dgp.pdf
for a good tutorial

» Common idea: Express datatypes via “polynomial functors”
» Functor: Function on the type level that comes with a "map” function

» Polynomial functor: Type constructors that can show up in the functor
restricted to product and sum operators

» E.g., instead of writing
data ListF x = EmptyList | Cons Int x
we can write
type ListF X = 1 + (Int * X)
(1 is something like Unit, 0 is something like Nothing)

18

.7
Polynomial functors

» Using polynomial functors, standard data type isomorphisms coincide with
standard identities known from basic algebra:

1%1=1
1+0=0+1=1
1*%0=0

A*XB=B*A
A*¥(B+C)=A*B+A*C
1+1=2

» Even standard rules for derivation of polynoms can be interpreted in the
polynomial functor world

F(X) = X * X * X = XAN3

F/(X) =3*X*X=3*X"2=(X"N2+ X2+ XN2)

F(X) describes containers with three elements.

F'(X) describes the types of containers with three elements with a “hole”:

Either the left element is missing, or the middle one, or the right one

For more on this topic, consider
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/

19

.7
FP pattern: Make effects explicit

» “Effect”: Things a function does in addition to (or instead of) computing a
value

» Example: Non-termination, I/O, Mutation of variables
» Idea: Type signatures should not “lie”

» If a function signature promises to map every string to an integer, it
should not sometimes return abnormally with an exception

» Example: In FP, an integer parsing function string2int would have a type
like:
string2int : String -> Maybe Int
instead of

string2int: String -> Int

and sometimes throwing an exception

20

What's good about explicit effects?

» Making effects explicit reduces or eliminates the dependence of the
program result on the order of evaluation

Example:
val myfunc = try {

fun (x: String) => if ... then throw SomeException ...
} catch (SomeException e) ...

The exception handler won’t work if the exception is thrown in a part of the
code whose evaluation is deferred, e.g., by being inside a function body

21

.7
Explicit effects

» Explicit effects are only a “design pattern” in some FP languages; in other
languages they are (partially) enforced by the type system

» Haskell, Clean, Idris, ...

» For instance, Haskell enforces explicit mutation and I/0, but does not
enforce termination

» For instance, a Haskell function of type Int -> Int will, given input x
» Either diverge on x

» Or return another integer y but not perform any mutation, not print
something on the screen, not write something to your harddrive, not
communicate on the network

» There are several advanced FP “patterns” for dealing with explicit effects
in an elegant way

» Monads, effect types, algebraic effects, ...
» Not in the scope of this lecture

22

- /]
Back to basic FP...

» Meta-Pattern in FP: "We can parameterize/abstract over anything”

» Concrete instance of the meta-pattern: Parameterize over functions
» Example: FP programmers hate this kind of redundancy

public static int Product(int n)

{
int product = 1;
for|(int i = 1; i <= n; i++)
{
product *= i;
}
return product;
} Dort Wepeat Yowrself

public static int Sum(int n)

{
int sum = 0;
for|(int 1 = 1; 1 <= n; i++)

{
}

return sum;

sum += i;

23

Parameterize all things...

public static int Product(int n)

{
int product = 1;€
for (int 1 = 1; i <= n; i++)
{
product *= i;
} lnitial Valwe
return product;
Common 3}

Code
public static int Sum(int n)

{

int sum = 90; € Rction
for Lint 1 = 1

s 1 <= n; 1+4)
{

sum += i;
}

return sum;

24

let product n =

let
let
wEE

let sum
let
let
(1.5

|
Varameterized

action

Initial Valwe

" <

initialvValue =1

action productSoFar x = productSoFar * x
n] |> List.fold action initialvalue

n =
initiglValue = 0
actidn sumSoFar x = sumSoFar+x
n] |3 List.fold action initialvalue
Lots of collection functions like this:
"fold”, "map”, “reduce’, "collect’, etc.

Common code extracted

25

