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OO design vs FP design J 

asdf 
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Functional Design 

� Core Principles 
�  Functions 
� Types 
� Composition  

�  Functions as Values 
� Monads 
� Maps 
� Monoids and folds 
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Functions are Values! 
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Functions are Values! 

Functions are “stand alone” and not associated to a class 
 

They are “first class”: They are values, just like 
numbers or strings, and can hence be passed to 

or returned from other functions 
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Functions are values! 

� A small Haskell session… 

> let x = 1 
 
> let add1 y = y+1 
 
> let add1 = \y -> y+1 
 
> let twice f x = f (f x) 
 
> twice add1 x 
3 
 

Same keyword to bind names for all values, 
including functions 

 
Lambda notation 

 
 

Higher-Order functions 
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Composition everywhere! 
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Composition everywhere! 

. 

Function composition operator 
(is itself a function) 
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Functions scale! 

“Functions in the small, objects in the large”? 
 

No. Due to composability, functions 
can be used on every abstraction level! 
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Types are not classes 
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What are types? 

� Types are “sets” of values 
�  (we use quotes around “set” because it may not strictly be a set as 

defined in set theory) 
�  If an expression e has type T, then this is a prediction that evaluation of e 

yields a value that is a member of the “set” T. 
�  Function types denote mathematical functions (recall that a mathematical 

function is also a set, namely a relation that is deterministic, … ) 

�  In FP, a type describes the structure of the set it denotes 

�  In most OO languages, a type is a class name 
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Nominal vs Structural typing 

�  In FP, a type describes the structure of the set it denotes 
� Two types are equivalent if they have the same structure 
� This is called “structural typing” 

�  In most OO languages, a type is a class name 
� Two types are equivalent if they are identical 
� This is called “nominal typing” 

� Example: The types A and B are different in Java (a nominal system) 

� Example: The types A and B are equivalent in Haskell (a structural 
system) 

class A { int x; int y } 
class B { int x; int y } 

 

type A = (Int,Int) 
type B = (Int,Int) 
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Composition of Types 

� Types can be composed, too 

� Standard type composition operators: Products and Sums 

� Sum types correspond to disjoint unions 

� Product types correspond to Cartesian products 

� Examples for sum types: 
�   Either type in Scala or Haskell 
� E.g., type Bool = Either Unit Unit 

        type Maybe a = Either a Unit 
� Sum types destructed via pattern matching 

� Some languages also feature non-disjoint unions 
� Union types in C 
� Not type-safe 
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Composition of Types 

� Examples for Product types 
� Tuples : (1,”hi”) has type (Int,String) 
� Records: (x = 5, y = 7) has type (x: Int, y: Int) 
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Products and Sums together:  
Algebraic data types 

� E.g. in Haskell: 
 

data Color = Red | Green | Blue 
 
data Point = Point Float Float 
 
data UniversityPerson = Professor String | Student Int String 
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Data of unbounded size via recursion 

� With products and sums, we can only construct data types of fixed size 
� To have things like lists, we need some form of recursion 

� One way: Fixed point operator on the type level 

data IntListF x = EmptyList | Cons Int x 
 
type IntList = Fix IntListF 
 
� More common way: Nominal types with recursion 
� Algebraic data types allow recursion! 
 
data IntList = EmptyList | Cons Int IntList 
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Algebraic data types vs. OO classes 

�  In OO languages, product types are formed by fields of classes 
� Sum types are expressed via subtyping 

Example: 
data IntList = EmptyList | Cons Int IntList 
 
can be expressed as 
 
abstract class IntList 
 
case class EmptyList() extends IntList 
case class Cons(x: Int, rest: IntList) extends IntList 
 
Important difference: Sum types in FP are usually closed, i.e., non-
extensible, whereas sums expressed via subtyping are open 
 
This is related to the “expression problem” we discussed earlier 
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Datatype-Generic Programming 

� Observation: Many standard functions can in principle be derived from 
the shape of an algebraic data type 
� Equality of two types, various traversals, “folds” 

� But we need to repeat those definitions for every datatype 

� Way out: Datatype-generic programming 
� We can’t address the topic in detail, see 

www.cs.ox.ac.uk/jeremy.gibbons/publications/dgp.pdf 
for a good tutorial 

� Common idea: Express datatypes via “polynomial functors” 
�  Functor: Function on the type level that comes with a “map” function 
� Polynomial functor: Type constructors that can show up in the functor 

restricted to product and sum operators 
� E.g., instead of writing 

data ListF x = EmptyList | Cons Int x 
we can write 
type ListF X = 1 + (Int * X) 
(1 is something like Unit, 0 is something like Nothing) 



19 

Polynomial functors 

�  Using polynomial functors, standard data type isomorphisms coincide with 
standard identities known from basic algebra: 

1 * 1 = 1 
1 + 0 = 0 + 1 = 1 
1 * 0 = 0 
A * B = B * A 
A * (B + C) = A * B + A * C 
1 + 1 = 2 
 
�  Even standard rules for derivation of polynoms can be interpreted in the 

polynomial functor world 
 
F(X) = X * X * X = X^3 
F’(X) = 3 * X * X = 3 * X^2 = (X^2 + X^2 + X^2) 
F(X) describes containers with three elements. 
F’(X) describes the types of containers with three elements with a “hole”: 
Either the left element is missing, or the middle one, or the right one 
For more on this topic, consider 
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/ 
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FP pattern: Make effects explicit 

�  “Effect”: Things a function does in addition to (or instead of) computing a 
value 
� Example: Non-termination, I/O, Mutation of variables 

�  Idea: Type signatures should not “lie” 
�  If a function signature promises to map every string to an integer, it 

should not sometimes return abnormally with an exception 

� Example: In FP, an integer parsing function string2int would have a type 
like: 
string2int : String -> Maybe Int 
 
instead of 
 
string2int: String -> Int 
 
and sometimes throwing an exception 
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What’s good about explicit effects? 

� Making effects explicit reduces or eliminates the dependence of the 
program result on the order of evaluation 

Example: 
 
val myfunc = try { 
  fun (x: String) => if … then throw SomeException … 
} catch (SomeException e) … 
 
The exception handler won’t work if the exception is thrown in a part of the 
code whose evaluation is deferred, e.g., by being inside a function body 
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Explicit effects 

� Explicit effects are only a “design pattern” in some FP languages; in other 
languages they are (partially) enforced by the type system 
� Haskell, Clean, Idris, … 
�  For instance, Haskell enforces explicit mutation and I/O, but does not 

enforce termination 

�  For instance, a Haskell function of type Int -> Int will, given input x 
� Either diverge on x 
� Or return another integer y but not perform any mutation, not print 

something on the screen, not write something to your harddrive, not 
communicate on the network 

� There are several advanced FP “patterns” for dealing with explicit effects 
in an elegant way 
� Monads, effect types, algebraic effects, … 
� Not in the scope of this lecture 
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Back to basic FP… 

� Meta-Pattern in FP: “We can parameterize/abstract over anything” 

� Concrete instance of the meta-pattern: Parameterize over functions 
� Example: FP programmers hate this kind of redundancy 
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Parameterize all things… 
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