
Software Design &
Programming Techniques

Prof. Dr-Ing. Klaus Ostermann

Based on slides by Prof. Dr. Mira Mezini

Design Patterns

2

2.1 Introduction to Design Patterns

Design Patterns

Life is filled with patterns – many of which we overlook due to the
business of our days – however once you get an eye for spotting them
(and it takes being intentional and some practice) you’ll be amazed by
what you see and you’ll wonder why you didn’t incorporate them into
your photography before.

Read more: http://digital-photography-school.com/using-repetition-and-patterns-in-
photography#ixzz0V2dVjxjO

3

What is the Pattern in the Patterns Here?
Design Patterns: Introduction to Design Patterns

While repetition in the humdrum
of daily life can at times be a
boring – capturing it in your
photography can create an image
with real impact. ... you can
either emphasize it or break it.

Read more: http://digital-photography-
school.com/using-repetition-and-patterns-
in-photography#ixzz0V316Sfan

4

What’s the Pattern Here?
Design Patterns: Introduction to Design Patterns

The depth of field that you select when taking an image will
drastically impact the composition of an image. It can isolate a
subject from its background and foreground (when using a shallow
depth of field) or it can put the same subject in context by
revealing it’s surrounds with a larger depth of field.

Read more: http://digital-photography-school.com/5-elements-of-composition-in-
photography#ixzz0V2ysR0Tg

Shallow Background

5

What’s the Pattern Here?
Design Patterns: Introduction to Design Patterns

With clever use of ‘texture’
images become almost three
dimensional.
Texture particularly comes into
play when light hits objects at
interesting angles.

Read more: http://digital-photography-
school.com/5-elements-of-composition-
in-photography#ixzz0V2yBLekA

6

What‘s the Pattern Here?
Design Patterns: Introduction to Design Patterns

Lines can add dynamic impact
to a photograph in terms of
mood as well as how they lead
an image’s viewer into a photo.

Read more: http://digital-photography-
school.com/working-the-lines-in-your-
photography#ixzz0V2wyPgSC

7

What is a Pattern?

A design pattern describes:
� A problem that occurs over and over again in our

environment.
� The core of the solution to that problem, in such a way that

you can use this solution a million times over, without ever
doing it the same way twice.

Design Patterns: Introduction to Design Patterns

Christopher Alexander, professor of architecture.

8

What is a Pattern?
Design Patterns: Introduction to Design Patterns

Aggressive disregard for originality.
Rule of three:
� Once is an event.
� Twice is an incident.
� Thrice it’s a pattern.

9

Patterns in Architecture

Place at
Window

Light from two sides

Deep terrace

10

Sofware Patterns

11

Motivation for Software Design Patterns
� Designing reusable software is hard!

(Originality is Overrated)
� Novices are overwhelmed.
� Experts draw from experience.

� Some design solutions reoccur.
Understanding their core is beneficial.
� Know when to apply.
� Know how to establish them in a generic

way.
� Know the consequence (trade-offs).

� Systematic software-development
� Documenting expert knowledge.
� Use of generic solutions.
� Use of shared vocabulary.
� Raising the abstraction level.

Design Patterns: Introduction to Design Patterns

12

Design Patterns and Change
� Most patterns address issues of software change.

� Most patterns allow some part of the system to vary independent of
the other parts.

� We often try to identify what varies in a system and encapsulate it.

Design Patterns: Introduction to Design Patterns

13

R. Martin‘s Chess Analogy

However, to become a master of
chess, one must study games of
other masters. Buried in those
games are patterns that must be
understood, memorized, and
applied repeatedly until they
become second nature.

There are thousands upon
thousands of these patterns.
Opening patterns are so numerous
that there are books dedicated to
their variations. Midgame patterns
and ending patterns are also
prevalent, and the master must be
familiar with them all.

When people begin to play chess they learn the
rules and physical requirements of the game.
They learn the names of the pieces, the way they
move and capture, the board geometry and
orientation.
At this point, people can play chess, although
they will probably be not very good players.

As they progress, they learn the principles.
They learn the value of protecting the pieces,
and their relative value. They learn the strategic
value of the center squares and the power of a
threat…

At this point, they can play a good game. They
know how to reason through the game and can
recognize “stupid” mistakes.

14

R. Martin‘s Chess Analogy

So it is with software. First one
learns the rules. The algorithms,
data structures and languages of
software.
At this point, one can write
programs, albeit not very good ones.

Later, one learns the principles of
software design. One learns the
importance of cohesion and
coupling, of information hiding and
dependency management.

But to truly master software design,
one must study the designs of other
masters. Deep within those designs
are patterns that can be used in other
designs. Those patterns must be
understood, memorized, and applied
repeatedly until they become second
nature.

15

Elements of Design Patterns

� Pattern Name
A short mnemonic to increase your design vocabulary.

�  Intent
Description when to apply the pattern (conditions that have to be
met before it makes sense to apply the pattern).

� Solution
The elements that make up the design, their relationships,
responsibilities and collaborations.

� Consequences
Costs and benefits of applying the pattern. Language and
implementation issues as well as impact on system flexibility,
extensibility, or portability.
The goal is to help understand and evaluate a pattern.

Design Patterns: Introduction to Design Patterns

16

GOF Design Patterns Overview
Design Patterns: Introduction to Design Patterns

Abstract Factory Composite Interpreter

Factory method Decorator Iterator

Builder Facade Mediator

Prototype Flyweight Memento

Singleton Proxy Null Object

Adapter Chain of Responsibility Observer

Bridge Command State

Strategy Template method Visitor

Taught here

17

Design Patterns

� 2.1 Introduction to Design Patterns
� 2.2 Quick Warm Up with Template Method
� 2.3 The Strategy Pattern
� 2.4 Decorator
� 2.5 Decorator vs. Strategy
� 2.6 Bridge
� 2.7 Visitor
� 2.8 Adapter
� 2.9 Builder
� 2.10 Command

Chapter Overview

18

2.2 Quick Warm Up with Template Method

Design Patterns

19

The Template Pattern in a Nutshell
Design Patterns: Quick Warm Up with Template Method

Intent:
� Separate policies from detailed mechanisms.
� Separate invariant and variant parts.

The Template Method Pattern plays a key role in the
design of object-oriented frameworks.

Solution Idea
� Use abstract classes to
� Define interfaces to detailed

mechanisms and variant parts.
�  Implement high-level policies

and invariant parts on top of
these interfaces.

� Control sub-class extensions.
� Avoid code duplication.

20

Example Application of Template Method

� Need a family of sorting algorithms.
� Clients should be oblivious of (reusable with) the variety of specific

algorithms.

� Need to separate the high-level policy of „sorting“ from low-level
mechanisms
� Deciding when an element is out of order
� Swapping elements.

Design Patterns: Quick Warm Up with Template Method

21

Separating the Policy of Sorting
Design Patterns: Quick Warm Up with Template Method

public abstract class BubbleSorter {

 protected int length = 0;

 protected void sort() {
 if (length <= 1) return;
 for (int nextToLast = length - 2; nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 if (outOfOrder(index))
 swap(index);
 }

 protected abstract void swap(int index);
 protected abstract boolean outOfOrder(int index);
}

Implement the policy in a template
method.
Hide mechanisms needed for
implementing the policy behind
abstract methods which are called by
the template method.

Policy

Mechanisms

22

Filling the Template for Specific Sorting Algorithms

public class IntBubbleSorter extends BubbleSorter {
 private int[] array = null;

 public void sort(int[] theArray) {
 array = theArray;
 length = array.length;
 super.sort();
 }
 protected void swap(int index) {
 int temp = array[index];
 array[index] = array[index + 1];
 array[index + 1] = temp;
 }
 protected boolean outOfOrder(int index) {
 return (array[index] > array[index + 1]);
 }

}

Design Patterns: Quick Warm Up with Template Method

23

Functional Counterpart of Template

� One can look at the template method pattern as a style for emulating
higher-order functions available in functional programming languages.

� Higher-order function: A function parameterized by other functions.

�  First-order functions abstract over variations in data.
� Higher-order functions abstract over variations in sub-computations.

�  First-class functions are values that can be passed as parameters and
returned as results.

� Advantage of functional style: Template parameters can be varied per
call, possibly dynamically. In OO style the number of variations is
statically fixed.
�  FP style actually corresponds more to strategy pattern

� Advantage of OO style: Easier to provide default implementations of low-
level methods

Design Patterns: Quick Warm Up with Template Method

24

Advantages and Deficiencies of Template

� … basically those of inheritance …

Design Patterns: Quick Warm Up with Template Method

25

Variations Cannot Be Reused
Design Patterns: Quick Warm Up with Template Method

� Template method forces detailed implementations

to extend the template class.

� The implementation of low-level mechanisms depends on the template.
� Cannot re-use low-level mechanisms functionality. swap and out-of-
order implemented in IntBubbleSorter may be useful in other
contexts as well, e.g., for quick sort.

� Problem addressed by mixin-based inheritance or traits (Squeak, Scala)

26

Design Patterns

� 2.1 Introduction to Design Patterns
� 2.2 Quick Warm Up with Template Method
� 2.3 The Strategy Pattern
� 2.4 Decorator
� 2.5 Decorator vs. Strategy
� 2.6 Bridge
� 2.7 Visitor
� 2.8 Adapter
� 2.9 Builder
� 2.10 Command

Chapter Overview

27

2.3 The Strategy Pattern

Design Patterns

28

2.3.1 The Strategy Pattern in a Nutshell

�  Intent: Define a family of algorithms, encapsulate each one, and make
them interchangeable.

� Strategy lets the algorithm vary independently from clients that use it.

Design Patterns: The Strategy Pattern

29

When to Use the Strategy Pattern

� Many related classes differ only in their behavior rather than
implementing different related abstractions (types).
Strategies allow to configure a class with one of many behaviors.

� You need different variants of an algorithm.
Strategies can be used when variants of algorithms are implemented
as a class hierarchy.

� A class defines many behaviors that appear as multiple
conditional statements in its operations.
Move related conditional branches into a strategy.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

30

Strategy Illustrated
Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

class Table extends Widget {
 TableCB cb;
 ...
 void setClipboard(TableCB clipboard) { cb = clipboard; }
 void keyPressed(KeyEvent e) {
 super.keyPressed(e);
 cb.keyPressed(e);
 }
 void copy() { cb.copyToClipboard(); }
 ...
}

abstract class TableCB {
 Table table;
 void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == VK_COPY) { copyToClipboard(); }
 ...
 }
 abstract void copyToClipboard();
 ...
}

31

Strategy Illustrated
Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

class TableAppCB extends TableCB {
 void copyToClipboard() {
 AppClipboard.setText(table.getCellText(currRow, currCol));
 }
 ...
}

class TableSystemCB extends TableCB {
 void copyToClipboard() {
 /* copy to the system clipboard */ }
 ...
}

32

Strategy as an Alternative to Inheritance

� The strategy pattern represents an alternative to modeling different
algorithms (sub-behaviors) as subclasses of Context.

�  Inheritance mixes algorithm‘s implementation with that of Context.
Context may become harder to understand, maintain, extend.

�  Inheritance results in many related classes.
Only differ in the algorithm or behavior they employ.

� When using subclassing we cannot vary the algorithm
dynamically.

� Encapsulating the algorithm in Strategy:
�  Lets you vary the algorithm independently of its context.
� Makes it easier to switch, understand, and extend the algorithm.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

33

Sorting Example Revisited
Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

Can we solve the reusability
problems with Strategy?

� Template method forces detailed implementations

to extend the template class.

� Detailed implementation depend on the template.

� Cannot re-use detailed implementations‘ functionality.
 swap and out-of-order implemented in IntBubbleSorter may be
useful in other contexts as well, e.g., for quick sort.

34

Sorting Example Revisited

� BubbleSorter and QuickSorter embodies different policies for
sorting the elements of a list.

� They use SortHandle to decide about the concrete element
ordering and swapping mechanisms.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

35

Sorting Example Revisited

� Not only are sorting policies reusable with different ordering and
swapping mechanisms; The latter become reusable with different
sorting policies.

� DIP: High-level policies should not depend on low-level mechanisms.
Both should depend on abstractions.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

36

Functional Counterpart of Strategies

� Every function passed as an argument to a higher-order function can be
considered a strategy

� More sophisticated application of the idea: type classes in Haskell
� A dictionary of functions is passed implicitly as an argument to a type-

class polymorphic function
� E.g. avg :: Fractional a => a -> a > a

 avg x y = (x + y) / 2

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

37

Clients Need to be Aware of Variations

� Clients must be aware of different strategies and how they differ, in
order to select the appropriate one.

� Clients might be exposed to implementation issues.
� Use Strategy only when the behavior variation is relevant to clients.

� Optional Strategy objects.
� Context checks if it has a Strategy before accessing it.
�  If yes, Context uses it normally.
�  If no, Context carries out default behavior.

� Benefit: clients don't have to deal with Strategy objects; unless they
don't like the default behavior.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

38

Footprint of Variations in Base Functionality

� The clipboard functionality leaves its footprint in the interface
and the implementation of the class Table:
� Methods to manage strategy objects: setClipboard
�  Facade methods forwarding functionality to strategy: copy

� There may be clients not interested in clipboard functionality.
� Violations of SRP and ISP

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

class Table extends Widget {
 TableCB cb;
 ...
 void setClipboard(TableCB clipboard) { cb = clipboard; }
 void keyPressed(KeyEvent e) {
 super.keyPressed(e);
 cb.keyPressed(e);
 }
 void copy() { cb.copyToClipboard(); }
 ...
}

39

An Example „One Size Fits All“ Strategy Interface

� When we outsource the implementation of a variable feature into a
strategy object, we need to design a fixed interface to the strategy
that fits all possible variations of the outsourced feature.

� This can lead to bloated interfaces which might be too complicated
for some clients not interested in sophisticated variations of a
feature.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

40

An Example „One Size Fits All“-Interface

 Consider the list selection feature of Swing’s JTable outsourced to class
ListSelectionModel

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

interface ListSelectionModel {
 int SINGLE SELECTION = 0;
 int SINGLE INTERVAL SELECTION = 1;
 int MULTIPLE INTERVAL SELECTION = 2;

 /** ...
 * In {@code SINGLE_SELECTION} selection mode,
 * this is equivalent to calling {@code setSelectionInterval},
 * and only the second index is used.
 * In {@code SINGLE_INTERVAL_SELECTION} selection mode,
 * this method behaves like {@code setSelectionInterval},
 * unless the given interval is immediately
 * adjacent to or overlaps the existing selection,
 * and can therefore be used to grow the selection.
 * ...
 */
 void addSelectionInterval(int index0, int index1);
 ...
}

41

An Example „One Size Fits All“-Interface

� The interface of ListSelectionModel is designed to satisfy the needs
of the most flexible selection model (multiple interval selection).

� As a result, the interface is too complicated for clients of simpler
selection models.

� See the comments of the methods in the interface.

� Yet, the design is not flexible enough, e.g., to handle arbitrary cell
range selection…

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

Use Strategy for features, whose variations do not affect the interface.

42

Communication Overhead

� A Strategy interface is shared by all concrete Strategy classes whether
the algorithms they implement are trivial or complex.

� Some concrete strategies won't use all the information passed to them
(Simple concrete strategies may use none of it.)
(Context creates/initializes parameters that never get used.)

If this is an issue use a tighter coupling between Strategy and Context;
let Strategy know about Context.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

43

Giving Strategy Visibility for the Context

� Two possible approaches:

� Pass the needed information as a parameter.
� Context and Strategy decoupled.
� Communication overhead.
� Algorithm can’t be adapted to specific needs of context.

� Context passes itself as a parameter or Strategy has a reference
to its Context.
� Reduced communication overhead.
� Context must define a more elaborate interface to its data.
� Closer coupling of Strategy and Context.

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

44

„One Size Fits All“ Strategy Interface
Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

Use Strategy for features whose variations do not affect the interface.

45

Increased Number of Objects

� Potentially many strategy objects need to be instantiated!

� The number of strategy objects can sometimes be reduced by stateless
strategies that several Contexts can share.

� Any state is maintained by Context.
� Context passes it in each request to the Strategy object.

(No / less coupling between Strategy implementations and Context.)

� Shared strategies should not maintain state across invocations.
(Services)

Design Patterns: The Strategy Pattern - The Strategy Pattern in a Nutshell

46

2.4 Decorator

Design Patterns

47

2.4.1 The Intent of Decorator

�  Intent: We need to add functionality to existing objects dynamically
and transparently, without affecting other objects.
� Dynamically meaning during runtime.
� Transparently meaning without having to implement conditional

logic to use the new functionality.

� Usual way off adding new functionality to a existing design:
Inheritance

Design Patterns: Decorator

48

2.4.2 Decorator Structure
Design Patterns: Decorator

49

2.4.3 Example

� java.io abstracts various data sources and destinations, as well as
processing algorithms:
� Programs operate on stream objects.
�  Independently of ultimate data source / destination / shape of data.

� Code example:
new DataInputStream(new FileInputStream(file)).readUnsignedByte()

Design Patterns: Decorator

50

2.4.4 Advantages

� Decorator enables more flexibility than inheritance:
�  Functionality can be added / removed at run-time.
� Different Decorator classes for a specific Component class enable to mix

and match responsibilities.

� Easy to add a functionality twice.
E.g., for a double border, attach two BorderDecorators.

� Helps to design software that supports OCP.

Design Patterns: Decorator

51

Decorator and cohesion

� Decorator avoids incoherent classes:

�  Feature-laden classes high up in the hierarchy.
(This also breaks encapsulation)

� Pay-as-you-go approach do not bloat, but extend using fine-grained
Decorator classes
�  Functionality can be composed from simple pieces.
� An application does not need to pay for features it does not use.

� A fine-grained Decorator hierarchy is easy to extend.

Design Patterns: Decorator - Advantages

52

2.4.5 Problems

� Lots of little objects

� A design that uses Decorator often results in systems composed of lots
of little objects that all look alike.

� Objects differ only in the way they are interconnected, not in their class
or in the value of their variables.

� Such systems are easy to customize by those who understand them,
but can be hard to learn and debug.

Design Patterns: Decorator

53

Object identity

� A decorator and its component are not identical!
�  From an object identity point of view, a decorated component is not

identical to the component itself.
� You should not rely on object identity when you use decorators.

� Example:
 FileInputStream fin = new FileInputStream(“a.txt”);
 BufferedInputStream din = new BufferedInputStream(fin);
 fin.read();

Design Patterns: Decorator - Problems

54

No late binding

� Delegation vs. forward semantics.

Design Patterns: Decorator - Problems

55

Example

1) A checking account, checkingAcc, is created.
2) An online decorator, onlineDec, is created with checkingAcc as its attribute.
3) Call to onlineDec.printHistory().

 a) Call to checkingAcc.printHistory() as the result of the forwarding by the call
to account.printHistory() in the implementation of
OnlineDecorator.printHistrory().
 b) Execution of CheckingAccount.printHistory().
Call to getType() inherited from Account, not OnlineAccount!

Design Patterns: Decorator - Problems

56

Example

� OnlineDecorator decorates both printHistory() and getType().

� Yet, since CheckingAccount.printHistory() calls getType() via this,
the execution escapes the decoration of getType() in OnlineDecorator.

Design Patterns: Decorator - Problems

57

2.4.6 Implementing Decorators

� Keep the common class (Component) lightweight!
�  It should focus on defining an interface.
� Defer defining data representation to subclasses.

Otherwise the complexity of Component might make the decorators too
heavyweight to use in quantity.

� Putting a lot of functionality into Component makes it likely that
subclasses will pay for features they do not need.

� These issues require pre-planning.
Difficult to apply decorator pattern to 3rd-party component class.

Design Patterns: Decorator

58

Implementing Decorators

� A decorator's interface must conform to the interface of the component it
decorates.
Concrete Decorator classes must therefore:
�  Inherit from a common class (C++) or
�  Implement a common interface (Java).

� There is no need to define an abstract Decorator class when you only
need to add one responsibility.
� That's often the case when you're dealing with an existing class

hierarchy rather than designing a new one.
� Can merge Decorator's responsibility for forwarding requests to the

component into the concrete Decorator.

Design Patterns: Decorator - Implementing Decorators

59

2.5 Decorator vs. Strategy

� Decorator and strategy share the goal of supporting dynamic behavior
adaptation.
� Can be used to simulate the effect of each other.
� So, when to use them?

Design Patterns

60

Discussion

� By extending the number of strategies from just one to an open-ended
list, we achieve the same effect as nesting decorators recursively.

� Using Strategy to simulate border decoration of text fields:
Different border styles by having the component forward border-drawing
to a Border object.
(Border is a Strategy that encapsulates a border-drawing strategy.)

Design Patterns: Decorator vs. Strategy

61

Discussion

� Decorator changes a component from the outside.
� The component does not know about its decorators.
� The decorators are transparent to the component.

� Component knows about Strategy-based extensions:

Design Patterns: Decorator vs. Strategy

62

Skin and guts

� Changing an object’s skin versus changing its guts:

� Decorator can be viewed as a skin over an object that changes its
behavior.

� Strategy can be viewed as guts inside an object that changes its
behavior.

Design Patterns: Decorator vs. Strategy

63

Interim Take Away

� Strategy is better when Component is intrinsically heavyweight, because:
� Decorator is too costly to apply
� Single Responsibility Principle

� A Decorator's interface must conform to Component's interface.
� A Strategy can have its own specialized interface.

E.g., a strategy for rendering a border need only define the interface for
rendering a border (drawBorder(), getWidth(), …).

� Strategy can be lightweight even if the Component class is heavyweight.

Design Patterns: Decorator vs. Strategy

64

2.5.1 Solution to Fragile Base-Class Problem?

� Decorator is suggested in many „OO with Style“-Books (e.g., Effective
Java, by Bloch) as a solution to the fragile base class problem.

�  Instead of inheriting from a class C consider:
� Declare the interface of C, IC
�  Let C implement IC
�  Implement the extension of C in a class CD that implements IC and

at the same time has a ic reference to an object of type IC
� CD reimplements methods in IC affected by the extension and

forwads the rest to ic.

Design Patterns: Decorator vs. Strategy

65

An Alternative InstrumentedHashSet
Design Patterns: Decorator vs. Strategy - Solution to Fragile Base-Class Problem?

import java.util.*;
public class ForwardingSet<E> implements Set<E> {
 private final Set<E> s;

 public ForwardingSet(Set<E> s) { this.s = s; }
 public void clear() { s.clear();}
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty(){ return s.isEmpty();}
 public int size(){ return s.size();}
 public Iterator<E> iterator(){ return s.iterator();}
 public boolean add(E e){ return s.add(e);}
 public boolean remove(Object o) { return s.remove(o);}
 public boolean containsAll(Collection<?> c) { ... }
 public boolean addAll(Collection<? extends E> c) { ... }
 public boolean removeAll(Collection<?> c) {...}
 ...
}

66

An Alternative InstrumentedHashSet
Design Patterns: Decorator vs. Strategy - Solution to Fragile Base-Class Problem?

import java.util.*;
public class InstrumentedSet<E> extends ForwardingSet<E> {
 private int addCount = 0;
 public InstrumentedSet(Set<E> s) { super(s); }
 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c){
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }
 public static void main(String[] args) {
 InstrumentedSet<String> s =
 new InstrumentedSet<String>(new HashSet<String>());
 s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
 System.out.println(s.getAddCount());
 }
}

67

An Alternative InstrumentedHashSet

� Bloch mentions that disadvantages of the decorator-based solutions
are few.
� Self Problem
� Tedious to write forewarding methods, „but you do it only once“.
� Efficiency impact of forwarding and memory footprint -> but „neither

turns out to have much impact in practice“

� What do you think?

Design Patterns: Decorator vs. Strategy - Solution to Fragile Base-Class Problem?

68

An Alternative InstrumentedHashSet
Design Patterns: Decorator vs. Strategy - Solution to Fragile Base-Class Problem?

import java.util.*;
public class ForwardingSet<E> implements Set<E> {
 private final Set<E> s;

 public ForwardingSet(Set<E> s) { this.s = s; }
 public void clear() { s.clear();}
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty(){ return s.isEmpty();}
 public int size(){ return s.size();}
 public Iterator<E> iterator(){ return s.iterator();}
 public boolean add(E e){ return s.add(e);}
 public boolean remove(Object o) { return s.remove(o);}
 public boolean containsAll(Collection<?> c) { ... }
 public boolean addAll(Collection<? extends E> c) { ... }
 public boolean removeAll(Collection<?> c) {...}
 ...
}

What happens if I add a new method to the interface?
Doesn‘t the same problem as with inheritance reappear?

69

An Alternative InstrumentedHashSet
Design Patterns: Decorator vs. Strategy - Solution to Fragile Base-Class Problem?

import java.util.*;
public class InstrumentedSet<E> extends ForwardingSet<E> {
 private int addCount = 0;
 public InstrumentedSet(Set<E> s) { super(s); }
 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c){
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }
 public static void main(String[] args) {
 InstrumentedSet<String> s =
 new InstrumentedSet<String>(new HashSet<String>());
 s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
 System.out.println(s.getAddCount());
 }
}

This makes assumptions about how addAll in the underlying set
object works.

Will this work, if addAll only adds elements that are not already in
the set?

Also, wouldn‘t one have to carefully reimplement all methods that

may or may not call state changing methods internally?

70

Design Patterns

� 2.1 Introduction to Design Patterns
� 2.2 Quick Warm Up with Template Method
� 2.3 The Strategy Pattern
� 2.4 Decorator
� 2.5 Decorator vs. Strategy
� 2.6 Bridge
� 2.7 Visitor
� 2.8 Adapter
� 2.9 Builder
� 2.10 Command

Chapter Overview

71

2.6 Bridge

� 2.6.1 Example
� 2.6.2 Advantages
� 2.6.3 Disadvantages

Design Patterns

72

2.6 Bridge

�  Intent: Decouple an abstraction from its implementation so that the two
can vary independently.

Design Patterns

73

2.6.1 Example
Design Patterns: Bridge

74

Implementation and abstraction

� Deriving Dialog is an abstraction.
It further specializes Window.

� Deriving MacWindow is an implementation.
It realizes Window for an operating system.

Design Patterns: Bridge - Example

75

Solution using Bridge

� By encapsulating the concept that varies we can avoid problems with
inheritance conflicts.
This is very similar to the technique used in the Strategy pattern.

�  Inheritance allows adding of new features.
� Composition demands a fixed interface, features cannot vary.

Design Patterns: Bridge - Example

76

2.6.2 Advantages

� Decoupling interface and implementation:
�  Implementation can be configured at run-time.
�  Implementation being used is hidden inside abstraction.

�  Improved extensibility
� Abstraction and Implementor hierarchies can be extended

independently.

Design Patterns: Bridge

77

2.6.3 Disadvantages

� Problems of parallel inheritance hierarchies
� Type safety problems
� Object identity problems
� Maintaining wrapper identity

Design Patterns: Bridge

78

Design Patterns

� 2.1 Introduction to Design Patterns
� 2.2 Quick Warm Up with Template Method
� 2.3 The Strategy Pattern
� 2.4 Decorator
� 2.5 Decorator vs. Strategy
� 2.6 Bridge
� 2.7 Visitor
� 2.8 Adapter
� 2.9 Builder
� 2.10 Command

Chapter Overview

79

2.7 Visitor

Design Patterns

80

2.7 Visitor

� 2.7.1 The Intent of Visitor
� 2.7.2 Structure
� 2.7.3 Example
� 2.7.4 Intersecting shapes with Visitor
� 2.7.5 Adding new elements
� 2.7.6 Partial visiting
� 2.7.7 Conclusion

Design Patterns

81

2.7.1 The Intent of Visitor

�  Intent: To represent an operation to be performed on the elements of an
object structure.
Visitor lets you define a new operation without changing the classes of
the elements on which it operates.

� The visitor pattern enables to add new behavior to existing classes in a
fixed class hierarchy without changing this hierarchy.

�  Implementing a concrete visitor is like adding a new method to the
elements of the class hierarchy.

� A visitor interface describes how to “treat” the element types.

Design Patterns: Visitor

82

2.7.2 Structure
Design Patterns: Visitor

83

Structure if method overloading is supported
Design Patterns: Visitor - Structure

84

2.7.3 Example

� Visitor visits all elements of a document.
� ToPDF converts concrete objects to PDF.
� Various other visitors may be implemented:

Spell checking, Grammar checking, Text analysis, Speaking Text
Service, ...

Design Patterns: Visitor

85

Advantages

� New operations easy to add without changing Element classes (add a
new concrete visitor).
Different concrete elements don not have to implement their part of a
particular algorithm.

� Related behavior focused in a single concrete visitor.

� Visiting across hierarchies: Visited classes are not forced to share a
common base class.

� Accumulating state: Visitors can accumulate state as they visit each
element, thus encapsulating the algorithm and all its data.

Design Patterns: Visitor - Example

86

2.7.4 Intersecting shapes with Visitor

� Given design forces every shape class to implement its intersection with
every other shape.
Adding new shapes means implementing new methods in every other
shape.

Design Patterns: Visitor

87

Solution using Visitor (1)
Design Patterns: Visitor - Intersecting shapes with Visitor

88

Solution using Visitor (1)

Shape c = new Circle(…);
Shape r = new Rectangle(…);
if (c.intersect(r)) {…}

Design Patterns: Visitor - Intersecting shapes with Visitor

89

2.7.5 Adding new elements

� As we have seen, it is easy to add new operations to this design.
� But what happens if we want to add a new element?

Design Patterns: Visitor

90

Adding Chart

� Problem: Since Visitor has no method for Chart, it wont be processed
by any visitor!

� Our design is not closed against this kind of change.

Design Patterns: Visitor - Adding new elements

91

Solution: Changing visitors

� Problems:
� We have to change all visitors for every new element.
� Many visitors will have empty methods to comply to the interface.

E.g. SpellChecker.visit(Chart)

Design Patterns: Visitor - Adding new elements

92

Solution: Keeping visitors unchanged (1)

� Sometimes data structures are extended, but it‘s optional to process
extensions.
E.g., it doesn’t make sense to spell check charts.

Design Patterns: Visitor - Adding new elements

93

Solution: Keeping visitors unchanged (2)

� Try to avoid such visitors as these implementations are extremely
fragile.
No static type safety

Design Patterns: Visitor - Adding new elements

94

Solution: Keeping visitors unchanged (3)

� Try to avoid such visitors as these implementations are extremely
fragile.
No static type safety

Design Patterns: Visitor - Adding new elements

95

Solution: Designing the visitors open

� The operation visit(Element) provides a trap door through which to
visit unforeseen element subclasses.

� Attention: Put the type check / type cast in the visit method of
ChartVisitor and not in the accept method of Chart.

Design Patterns: Visitor - Adding new elements

96

2.7.6 Partial visiting

� Partial visiting is not supported!
To provide a common abstract Visitor interface to Element, every
derivative of Element need to be addressed by every derivative of
Visitor; even if this might not make sense or is not needed.
We have seen this for SpellChecker.visit(Chart)

� Visitor is like a matrix (cross product of all Visitor and Element classes):

Design Patterns: Visitor

97

2.7.7 Conclusion

� Use Visitor for stable element hierarchies!
Visitor works well in data hierarchies where new elements are never or at
least not very often added.

� Do not use it if new elements are a likely change.

� Visitor only makes sense if we have to add new operations often!
In this case Visitor closes our design against these changes.

Design Patterns: Visitor

98

2.8 Adapter

� 2.8.1 Example
� 2.8.2 Object Adapter
� 2.8.3 Class Adapter

Design Patterns

99

2.8 Adapter

�  Intent: Fit foreign components into an existing design.
� We want to reuse existing frameworks or libraries in our software, even

if they do not match with our design.
� We do not want to change our design to adhere to the structure of the

reused components.

Design Patterns

100

2.8.1 Example

� We have acquired the framework GraphicalFramework.
� GraphicalFramework provides the interface Node to draw rectangles with

a headline and text to the screen.

� Drawing is done by the framework, we just need to provide the data via
the interface Node.

Design Patterns: Adapter

101

Desired usage of framework

� Our own design represents different kinds of persons.

� We want to draw our data to the screen:
� Name and department of Employee.
� Name and address of Customer.

Design Patterns: Adapter - Example

102

Adapting the framework

� We will create adapters to use the functionality of GraphicalFramework
for our classes.
We have to wrap Employee and Customer to fit with Node.

� There are two different kind of adapters:
� Object Adapter
� Class Adapter

Design Patterns: Adapter - Example

103

2.8.2 Object Adapter
Design Patterns: Adapter

� Adaptee is wrapped by Adapter to fit in the interface of Target.
� Adapter forwards calls of Client to operation() to the specific methods

of Adaptee.

adaptee.specificOperation();

104

Using Object Adapter
Design Patterns: Adapter - Object Adapter

105

Using Object Adapter
Design Patterns: Adapter - Object Adapter

adaptee.getName(); adaptee.getName();

adaptee.getDepartment(); adaptee.getAddress();

106

Discussion

� Advantages:
� Adapter works with Adaptee and any subclass of it.
� Adapter can add functionality to Adaptee and its subclasses.

� Disadvantages:
� Cannot override Adaptee.
� Cannot reuse Adapter with subclasses of Target.
� Adapter and Adaptee are different objects.

(Need to maintain relation between adaptee and his adapter)

Design Patterns: Adapter - Object Adapter

107

2.8.3 Class Adapter

�  Instead of having Adaptee as an attribute, Adapter inherits from Adaptee
and forwards calls of Client to operation() to itself.

Design Patterns: Adapter

specificOperation();

108

Using Class Adapter
Design Patterns: Adapter - Class Adapter

109

Using Class Adapter
Design Patterns: Adapter - Class Adapter

getName();

getDepartment();

getName();

getAddress();

110

Discussion

� Advantages:
� Behavior of Adaptee can be overridden.
� Adapter and Adaptee are the same object, no forwarding.

� Disadvantages:
� Adapter cannot be used with subclasses of Adaptee nor Target.
� Cannot adapt existing objects/must change constructor calls
� No independent extensibility with multiple adapters
� Multiple inheritance must be possible.

E.g. Java: At least one of Target and Adaptee must be an Interface.

Design Patterns: Adapter - Class Adapter

111

2.9 Builder

� 2.9.1 Structure
� 2.9.2 Example
� 2.9.3 Discussion

Design Patterns

112

2.9 Builder

�  Intent: Divide the construction of objects so that different
implementations of these steps can construct different representations of
objects.

� Often there are objects that are constructed from multiple parts.
Builder divides the construction of such objects into different steps.

� Builder also allows to abstract these steps so objects can be constructed
from different parts.

Design Patterns

113

2.9.1 Structure

� Builder defines the individual steps of the construction of Product.
� Director knows in which order to construct Product.
� ConcreteBuilder implements the steps of construction.

Design Patterns: Builder

114

2.9.2 Example

� We want to construct different types of cars.
�  In this example, cars have an engine and an interior.

Design Patterns: Builder

115

A car builder

� CarBuilder defines the two methods to construct cars.
Concrete builders must implement these methods.
For convenience, the instantiation of cars (buildCar()) is implemented in
CarBuilder.

� CarConstructionDirector is configured with a CarBuilder and calls the
construction methods in the correct order.

Design Patterns: Builder - Example

return builder.getCar(); builder.buildCar();
builder.buildEngine();
builder.buildInterior();

116

Two possible car builders
Design Patterns: Builder - Example

class CheapCarBuilder extends CarBuilder {

 void buildEngine() {
 car.setEngine(Engine.SMALL_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.PLASTIC_INTERIOR);
 }

}

class LuxuryCarBuilder extends CarBuilder {

 void buildEngine() {
 car.setEngine(Engine.SPORT_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.WOODEN_INTERIOR);
 }

}

117

2.9.3 Discussion

� Advantages:
� Creation of objects can be configured on runtime.
� Concrete builders can use complex logic.

E.g. a car builder creating cars depending on available parts in storage.
� Good way to create composite structures.

� Disadvantages:
� May yield many classes.
� Only works if all objects can be constructed using the same order.

Design Patterns: Builder

118

Builder and Abstract Factory

� Abstract Factory focuses on creating multiple objects of a common family.
� Abstract Factory knows what object to create.
� Configuration is fixed after deployment of the software.

� Builder focuses on creating complex objects step by step.
� The director knows how to construct the object.
� Configuration is chosen at runtime via the concrete builder.

� Use Abstract Factory for creating objects depending on finite numbers of
factors you know in advance.
E.g. if there are only three kind of cars.

� Use Builder for creating complex objects depending on unbound number
of factors that are decided at runtime.
E.g. if cars can be configured with multiple different parts.

Design Patterns: Builder - Discussion

119

2.10 Command

� 2.10.1 Structure
� 2.10.2 Example
� 2.10.3 Advantages
� 2.10.4 Implementing a command history
� 2.10.5 Implementing Macro Commands

Design Patterns

120

2.10 Command

�  Intent: Encapsulate a request to an object, thereby allowing to:
�  Issue requests without knowing the receiver or the operation being

requested.
� Parameterize clients with different requests.
� Queue or log requests and support undoable requests.

Design Patterns

121

2.10.1 Structure

� Command declares the interface for executing an operation.
� ConcreteCommand defines a receiver-action binding by implementing
execute().

� Client creates a ConcreteCommand object and sets its Receiver and
configures the command of the Invoker.

� Invoker asks its command to carry out the request.
� Receiver knows how to perform the operations associated with carrying

out a request.

Design Patterns: Command

122

Collaboration
Design Patterns: Command - Structure

123

2.10.2 Example

� Given user operations:
� Creating a document, opening, saving, printing a document.
� Cutting selected text and pasting it back in, etc.

� Want a mechanism for accessing operations from more than one place in
UI (a menu and a toolbar).
We want to decouple invoker from receiver.

Design Patterns: Command

124

Problems

� The implementation of each of the MenuItem subclasses are the same as
the implementation of one of the ToolIcon subclasses.
Multiple copies of the same functionality present a maintenance problem.

� Need a mechanism for MenuItem and ToolIcon to share implementations.
Need to separate the user interface control from it’s implementation so
that implementations can be shared.

� Want to also support a general undo capability so that the user can
reverse previous operations.

Design Patterns: Command - Example

125

Solution with Command
Design Patterns: Command - Example

126

2.10.3 Advantages

�  Implementation Sharing
� A command centralizes an operation to a single location so that multiple

copies of the code are not necessary.
� Different user interface controls can share the same implementation

(e.g., a button, tool icon, and menu item can all perform the same
operation).

� Decouples the user interface from the operation being performed.

Design Patterns: Command

127

Supporting Undoable Operations

� Commands store enough information to undo the performed operation.

� Each command subclass implements its unexecute() function;
when unexecute() is called the command reverses its action.

Design Patterns: Command - Advantages

128

Multiple Levels of Undo

� Undoing more than just the last command allows the user to back up
farther and farther each time undo is selected from the menu.

� Adding a redo feature: it would also be nice for a user to be able to redo
an undone operation.
Redo should have multiple levels corresponding to the number of undo's
issued by the user.

Design Patterns: Command - Advantages

129

2.10.4 Implementing a command history

� The command history can be seen as a list of past commands.

� As new commands execute they are added to the front of the history.

Design Patterns: Command

130

Undoing

� To undo a command, unexecute() is called on the command at the front
of the list.

� The present pointer is moved past that command.

Design Patterns: Command - Implementing a command history

131

Undoing further

� To undo the command before that, unexecute() is called on the next
command in the history.

� The present pointer is moved to point before that command.

Design Patterns: Command - Implementing a command history

132

Redoing

� To redo the command that was just undone, execute() is called on that
command.

� The present pointer is moved up past that command.

Design Patterns: Command - Implementing a command history

133

2.10.5 Implementing Macro Commands
Design Patterns: Command

