
Software Design &
Programming Techniques

Prof. Dr-Ing. Klaus Ostermann

Based on slides by Prof. Dr. Mira Mezini

Class Design Principles

2

Class Design Principles

� 2.1 About Class Design Principles (CDPs)
� 2.2 Single Responsibility Principle (SRP)
� 2.3 The Open-Closed Principle (OCP)
� 2.4 Liskov Substitution Principle (LSP)
� 2.5 Interface Segregation Principle (ISP)
� 2.6 Dependency Inversion Principle (DIP)

Chapter Overview

3

2.1 About Class Design Principles (CDPs)

Class Design Principles

4

CDPs are Heuristics

� CDPs state desired properties of class designs.
E.g. “a class should have only one responsibility”

� CDPs are heuristics.
They serve as guides to good designs, not as absolute criteria to judge
the quality of designs.

� CDPs are somewhat vague and ambiguous.
This does not make them useless.

Class Design Principles: About Class Design Principles (CDPs)

5

CDPs are About Ease of Use and Change

� CDPs help making a class design usable for clients.
We think about how our classes are used by other classes.

� During its lifetime of a software its class design changes constantly.
This is a consequence of requirement changes which is the rationale for
conducting an iterative design process.

� CDPs do not only judge the current state of the code
� They give an understanding of how well the code will work

under the effect of change.
Especially whether and how changes will affect client classes.

Class Design Principles: About Class Design Principles (CDPs)

Class Design Principles do not aim for code that
works, but for code that can efficiently be worked on!

6

S.O.L.I.D. Principles

In this course, we will examine the S.O.L.I.D Principles:

� Single Responsibility Principle (SRP)
� Open-closed Principle (OCP)
�  Liskov Substitution Principles (LSP)
�  Interface Segregation Principle (ISP)
� Dependency Inversion Principle (DIP)

Class Design Principles: About Class Design Principles (CDPs)

7

2.2 Single Responsibility Principle (SRP)

Class Design Principles

A class (*) should have only
one reason to change.

(*)More generally, every abstraction such as method, function,
datatype,module

8

2.2 Single Responsibility Principle (SRP)

� 2.2.1 Responsibility and Cohesion
� 2.2.2 Introduction to SRP by Example
� 2.2.3 The Employee Example
� 2.2.4 The Modem Example
� 2.2.5 To Apply or Not to Apply
� 2.2.6 SRP, more generally
� 2.2.7 The Smart Home Example
� 2.2.8 Takeaway

Class Design Principles

9

2.2.1 Responsibility and Cohesion

� A class is assigned the responsibility to know or do something
Class PersonData is responsible for knowing the data of a person.
Class CarFactory is responsible for creating Car objects.

� A responsibility is an axis of change.
If new functionality must be achieved, or existing functionality needs to
be changed, the responsibilities of classes must be changed.

� A class with only one responsibility will have only one reason to change!

Class Design Principles: Single Responsibility Principle (SRP)

10

Responsibility and Cohesion

� Cohesion measures the degree of togetherness among the
elements of a class.
It measures the extent to which operations and data within a class
belong to a common concept this class is representing.

� Cohesiveness is not an absolute predicate on classes/designs
(measured by binary values).

�  In a class with very high cohesion every element is part of the
implementation of one concept.
 The elements of the class work together to achieve one common
functionality.

� A class with high cohesion implements only one responsibility (only few
responsibilities)!
 Therefore, a class with low cohesion violates SRP.

Class Design Principles: Single Responsibility Principle (SRP) - Responsibility and Cohesion

11

2.2.2 Introduction to SRP by Example

� Consider the following design, depicted in UML.

� GUI package uses Rectangle to draw rectangle shapes in the screen.
 Rectangle uses DrawingUtility to implement draw.

� GeometricApplication is a package for geometrical computations
which also uses Rectangle (area()).

Class Design Principles: Single Responsibility Principle (SRP)

What do you think
about the design?

12

Problems of Rectangle

� Rectangle has multiple responsibilities!
1)  Geometrics of rectangles represented by

the method area()
2)  Drawing of rectangles represented by the

method draw()

� Rectangle has low cohesion!
 Geometrics and drawing do not naturally
belong together.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

OK, but why is this a problem?

13

Problems of Rectangle

� Rectangle is hard to use! It has multiple reasons to change.
Even if we want to use only one of its responsibilities, we must depend
on both of them.
We inherit the effects of changes along every possible axis of change
(= responsibility)!

� Rectangle is easily misunderstood!
It is not only a representation of a rectangle shape, but also part of a
process concerned with drawing rectangle shapes in the screen.
It was not created as a representation of a certain concept, but as a
bundle of needed functionality without careful consideration of their
cohesion.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

14

Undesired Effects of Change

� Unnecessary dependency between GeometricApplication and
DrawingUtility (DrawingUtility classes have to be deployed along
with Rectangle) even if we only want to use the geometrical functions of
rectangles.

� Problem: If drawing functionality changes in the future, we need to
retest Rectangle also in the context of GeometricalApplication!

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

15

A SRP-Compliant Design

� Split Rectangle according to its responsibilities.
 GeometricRectangle models a rectangle by its geometric properties.
DrawableRectangle models a graphical rectangle by its visual properties.

� GeometricalApplication uses only GeometricRectangle.
 It only depends on the geometrical aspects.

� GUI uses DrawableRectangle and indirectly GeometricRectangle.
 It needs both aspects and therefore has to depend on both.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

16

Two Classes with High Cohesion

� Both classes can be (re)used easily!
Only changes to the responsibilities we use will affect us.

� Both classes are easily understood!
 Each implements one concept.
GeometricRectangle represents a rectangle shape by his size.
DrawableRectangle encapsulates a rectangle with visual properties.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

17

Takeaway so Far

� Applying SRP maximizes the cohesion of classes.
� Classes with high cohesion:
�  can be reused easily,
� are easily understood,
� protect clients from changes, that should not affect them.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

A class should have only
one reason to change.

18

What’s Next?

� Next, more scenarios are discussed, where we might want to apply SRP.

� Goal:
� Get a better feeling as when to apply SRP and when not.
� Get to know some issues related to applying SRP in terms of the

mechanisms available for doing so.

Class Design Principles: Single Responsibility Principle (SRP) - Introduction to SRP by Example

19

2.2.3 The Employee Example

� Consider the class Employee which has two responsibilities:
1) Calculating the employees pay.
2) Storing the employee data to the database.

Class Design Principles: Single Responsibility Principle (SRP)

Should we split the
responsibilities of this class?

20

Employee Represents a Typical SRP-Violation

� Calculating the payment of an employee is part of the business rules.
It corresponds to a real-world concept the application shall implement.

� Storing the employee information in the database is a technical aspect.
It is a necessity of the IT architecture that we have selected; does not
correspond to a real-world concept.

� Mixing business rules and technical aspects is calling for trouble!
 From experience we know that both aspects are extremely volatile.

Class Design Principles: Single Responsibility Principle (SRP) - The Employee Example

Most probably we should split in
this case.

21

2.2.4 The Modem Example

� The class Modem has also two responsibilities:
1)  Connection management (dial and hangup)
2)  Data communication (send and receive)

Class Design Principles: Single Responsibility Principle (SRP)

It depends…

Should we split the
responsibilities of this class?

22

To Split or Not to Split Modem?

 Break down the question to:

� Do we expect connection management and data communication to

constitute different axes of change?
 Do we expect them to change together, or independently.

� Will these responsibilities be used by different clients?

� Do we plan to provide different configurations of modems to
different customers?

Class Design Principles: Single Responsibility Principle (SRP) - The Modem Example

23

To Split or Not to Split Modem?

� Split if:
� Responsibilities will change separately.
� Responsibilities are used / will probably be used by different clients.
� We plan to provide different configurations of modems with varying

combinations of responsibilities (features).

� Do not split if:
� Responsibilities will only change together, e.g. if they both implement

one common protocol.
� Responsibilities are used together by the same clients.
� Both correspond to non optional features.

Class Design Principles: Single Responsibility Principle (SRP) - The Modem Example

24

The Modem Example

� The class Modem has also two responsibilities:
1)  Connection management (dial and hangup)
2)  Data communication (send and receive)

Class Design Principles: Single Responsibility Principle (SRP) - The Modem Example

Probably not …

Should we split the
responsibilities of this class?

25

2.2.5 To Apply or Not to Apply
Class Design Principles: Single Responsibility Principle (SRP)

� Decide based on the nature of responsibilities:
 changed together / not used together
 used together / not used together
 optional / non optional

� Only apply a principle, if there is a symptom!
An axis of change is an axis of change only, if the change actually
occurs.

26

2.2.6 SRP, more generally

� More generally, the SRP applies to any kind of programming abstraction
� Classes, methods, functions, packages, data types, …

�  Important: The SRP must be applied with respect to the right level of
abstraction
� High-level abstractions à high-level responsibilites
� Otherwise it seems contradictory that, say, a package (a collection of

classes designed according to SRP) can have only a single responsibiltiy

Class Design Principles: Single Responsibility Principle (SRP)

27

Strategic Application

� Choose the kinds of changes to guide SRP application.
� Guess the most likely kinds of changes.
� Separate to protect from those changes.

� Prescience (Voraussicht) derived from experience:
� Experienced designer hopes to know the user and an industry well

enough to judge the probability of different kinds of changes.
�  Invoke SRP against the most probable changes.

� After all: Be agile.
 Predictions will often be wrong.
 Wait for changes to happen and modify the design when needed.
Simulate change.

Class Design Principles: Single Responsibility Principle (SRP) - SRP, more generally

28

Simulate Change

� Write tests first.
� Testing is one kind of usage of the system
�  Force the system to be testable; changes in testability will not be

surprising later.
�  Force developers to build the abstractions needed for testability;

protect from other kind of changes as well.

� Use short development (iteration) cycles
� Develop features before infrastructure; show them to stakeholders
� Develop the most important features first
� Release software early and often; get it in front of users and

customers as soon as possible

Class Design Principles: Single Responsibility Principle (SRP) - SRP, more generally

29

2.2.7 The Smart Home Example

� Consider the case of a smart
home provider.

� A smart home has many
features that are controlled
electronically.

� The provider wants to sell
several configurations of a
smart home, each with a
specific selection of features.

�  Let us judge a typical OO
design of a smart home…

Class Design Principles: Single Responsibility Principle (SRP)

30

Typical OO Design
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

abstract class Location {
 abstract List<Shutter> shutters();
 abstract List<Light> lights(); ...
}
class Room extends Location {
 List<Light> lights;
 List<Light> lights() { return lights; }
 List<Shutter> shutters; ...
}
abstract class CompositeLocation extends Location {
 abstract List<? extends Location> locations();
 List<Light> lights() { ... }
 List<Shutter> shutters() { ... } ...
}
class Floor extends CompositeLocation {
 List<Room> rooms;
 List<? extends Location> locations() { return rooms; } ...
}
class House extends CompositeLocation {
 List<Floor> floors;
 List<? extends Location> locations() { return floors; } ...
}

Lighting control
feature

Shutter control
feature

31

To Split or not to Split
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

Yes, if we want to be able to
make functional packages -
heating control, lightening

control, security, etc. - optional

The question is how?

Should we split the
responsibilities in the smart

home scenario?

32

How to Split Responsibilities?
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

 abstract class Location {
 }
 abstract class CompositeLocation extends Location {
 abstract List<? extends Location> locations();
 }
 class Room extends Location {
 }
 class Floor extends CompositeLocation {
 List<Room> rooms;
 List<? extends Location> locations() { return rooms; }
 }
 class House extends CompositeLocation {
 List<Floor> floors;
 List<? extends Location> locations() { return floors; }
 }

 ...
 House house = new House();
 House house() { return house; }
 ...

Base configuration

Ideally would like to have several versions of class definitions - one
per responsibility - which can be mixed and matched on-demand.

33

 abstract class Location {
 }
 abstract class CompositeLocation extends Location {
 abstract List<? extends Location> locations();
 }
 class Room extends Location {
 }
 class Floor extends CompositeLocation {
 List<Room> rooms;
 List<? extends Location> locations() { return rooms; }
 }
 class House extends CompositeLocation {
 List<Floor> floors;
 List<? extends Location> locations() { return floors; }
 }

 ...
 House house = new House();
 House house() { return house; }
 ...

Base configuration

How to Split Responsibilities?
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

Shutter control

 abstract class Location {
 abstract List<Shutter> shutters();
 }

 abstract class CompositeLocation {
 List<Shutter> shutters() { ... }
 }

 class Room {
 List<Shutter> shutters;
 List<Shutter> shutters() { return shutters; }
 }

Lighting control

 abstract class Location {
 abstract List<Light> lights();
 }

 abstract class CompositeLocation {
 List<Light> lights() { ... }
 }

 class Room {
 List<Light> lights;
 List<Light> lights() { return lights; }
 }

Ideally would like to have several versions of class definitions - one
per responsibility - which can be mixed and matched on-demand.

34

View-Specific Responsibilities
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

35

abstract class LocationWithShutters extends Location {
 abstract List<Sutter> shutters();
 ...
}

abstract class CompositeLocationWithShutters extends
CompositeLocation {
 ...

}

...

Splitting by Inheritance
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

abstract class LightedLocation extends Location {
 abstract List<Light> lights();
 ...
}
abstract class LightedCompositeLocation extends CompositeLocation {
 List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (Location child : locations()) {
 lights.addAll(child.lights())}
 return lights;
 }
}
class LightedRoom extends Room {
 List<Light> lights;
 List<Light> lights() { return lights; }
}
class LightedFloor extends ...
class LightedHouse extends ...

...
House house = new LightedHouse();
...

What do you think
about the design?

36

abstract class LightedLocation extends Location {
 abstract List<Light> lights();
 ...
}
abstract class LightedCompositeLocation extends CompositeLocation {
 List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (Location child : locations()) {
 lights.addAll(child.lights())}
 return lights;
 }
}
class LightedRoom extends Room {
 List<Light> lights;
 List<Light> lights() { return lights; }
}
class LightedFloor extends ...
class LightedHouse extends ...

...
House house = new LightedHouse();
...

Splitting by Inheritance: Problems
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

Classes are not replaced in
type references.

child is of type Location.
Call is invalid. Need a cast.
This is unsafe because the
design cannot guarantee that
only LightedLocations are
added as children to a
LightedCompositeLocation.

37

abstract class LightedLocation extends Location {
 abstract List<Light> lights();
 ...
}
abstract class LightedCompositeLocation extends CompositeLocation {
 List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (Location child : locations()) {
 lights.addAll(child.lights())}
 return lights;
 }
}
class LightedRoom extends Room {
 List<Light> lights;
 List<Light> lights() { return lights; }
}
class LightedFloor extends ...
class LightedHouse extends ...

...
House house = new LightedHouse();
...

Splitting by Inheritance: Problems
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

Classes are not replaced in
inheritance relationships.

What should LightedFloor,
LightedHouse inherit from?

Inherit from Floor/House
and duplicate lightening
functionality.

Alternatively, inherit form
LightedCompositeLocation
and duplicate Floor/House
functionality.

None is satisfactory.

38

abstract class LightedLocation extends Location {
 abstract List<Light> lights();
 ...
}
abstract class LightedCompositeLocation extends CompositeLocation {
 List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (Location child : locations()) {
 lights.addAll(child.lights())}
 return lights;
 }
}
class LightedRoom extends Room {
 List<Light> lights;
 List<Light> lights() { return lights; }
}
class LightedFloor extends ...
class LightedHouse extends ...

...
House house = new LightedHouse();
...

Splitting by Inheritance: Problems
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

We must ensure that the new
classes are instantiated
whenever the old ones were
instantiated in the base
configuration.

39

Splitting by Inheritance: Problems
Class Design Principles: Single Responsibility Principle (SRP) - The Smart Home Example

Moreover, the composition is not easy even
with multiple inheritance.

Later for a more elaborated discussion.

40

2.2.8 Takeaway

� Applying SRP maximizes the cohesion of classes.
� Classes with high cohesion
�  can be reused easily,
� are easily understood,
� protect clients from changes, that should not affect them.

� But be strategic in applying SRP.
� Carefully study the context and make informed trade-offs.
� Guess at most likely axes of change and separate along them.
� Be agile: Simulate changes as much as possible; apply SRP when

changes actually occur.
� Separation may not be straightforward with typical OO mechanisms.

Class Design Principles: Single Responsibility Principle (SRP)

A class should have only
one reason to change.

41

Class Design Principles

� 2.1 About Class Design Principles (CDPs)
� 2.2 Single Responsibility Principle (SRP)
� 2.3 The Open-Closed Principle (OCP)
� 2.4 Liskov Substitution Principle (LSP)
� 2.5 Interface Segregation Principle (ISP)
� 2.6 Dependency Inversion Principle (DIP)

Chapter Overview

42

2.3 The Open-Closed Principle (OCP)

Class Design Principles

Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modifications.

(Robert C. Martin, 1996)*

*Martin claims this paraphrases the open-closed principle by
Bertrand Meyer, but Meyer‘s definition is different.

43

2.3 The Open-Closed Principle (OCP)

� 2.3.1 Extension and Modification
� 2.3.2 Abstraction is the Key
� 2.3.3 OCP by Example
� 2.3.4 Abstractions May Support or Hinder Change
� 2.3.5 Strategic and Agile Opening
� 2.3.6 Takeaway

Class Design Principles

44

2.3.1 Extension and Modification

� Extension: Extending the behavior of an module.

� Modification: Changing the code of an module.

� Open for extension:
As requirements of the application change, we can extend the module
with new behaviors that satisfy those changes. We change what the
module does.

� Closed for modification:
Changes in behavior do not result in changes in the modules source or
binary code.

Class Design Principles: The Open-Closed Principle (OCP)

45

Why Closed for Modifications?
Class Design Principles: The Open-Closed Principle (OCP) - Extension and Modification

Question: Why not simply change the code if I needed?

� Module was already delivered to customers, a change will not be
accepted.

 If you need to change something, hopefully you opened your module for
extension!

� Module is a third-party library only available as binary code.
 If you need to change something, hopefully the third-party opened the
module for extension!

� Most importantly: not changing existing code for the sake of
implementing extensions enables incremental compilation, testing,
debugging.

46

2.3.2 Abstraction is the Key

 To enable extending a software entity without modifying
it, its implementation must abstract over variable
subparts of behavior.

Class Design Principles: The Open-Closed Principle (OCP)

47

Abstraction in Programming Languages

 Object-oriented languages:
� abstractions are encoded in abstract base classes, interfaces, generics

(type parameters), methods, …
�  the unbounded group of possible behaviors is represented by all the

possible derivative classes of an abstract class, the implementations
of an interface, the instances of a type parameter, all possible
arguments to a method, …

 Functional languages:
� abstractions are encoded in functions, generic data types/functions, …
�  the unbounded group of possible behaviors is represented by all the

possible calls of the functions, all possible type instantiations of
generic data types/functions, …

Class Design Principles: The Open-Closed Principle (OCP) - Abstraction is the Key

Many programming languages allow to create
abstractions that are fixed and yet represent an

unbound group of possible behaviors!

48

Abstracting over Variations in OO (I)

� Container declares the layout functionality as abstract methods, but
does not implement it. The rest of Container is implemented against
the abstraction introduced by the abstract methods.

� Concrete subclasses fill in the details over which Container’s
implementation abstracts.

Class Design Principles: The Open-Closed Principle (OCP) - Abstraction is the Key

49

Abstracting over Variations in OO (II)

� Container delegates the layout functionality to an abstraction. The
rest of its functionality is implemented against this abstraction.

� To change the behavior of an instance of Container we configure it
with the LayoutManager of our choice.

� We can add new behavior by implementing our own LayoutManager.

Class Design Principles: The Open-Closed Principle (OCP) - Abstraction is the Key

50

2.3.3 OCP by Example

� Consider an application that draws shapes - circles and rectangles –
on a standard GUI.

Class Design Principles: The Open-Closed Principle (OCP)

51

A Possible Design for Drawable Shapes

� Consider the following design of Shapes.

� Realizations of Shape identify themselves via the enumeration
ShapeType.

� Realizations of Shape declare specialized methods for the shape type
they represent; they mostly serve as containers for storing the
geometric properties of shapes.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

52

A Possible Design for Drawable Shapes

 Drawing is implemented in separate methods (say of Application class)

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 switch(shape.getType()) {
 case Circle:
 drawCircle((Circle)shape);
 break;
 case Rectangle:
 drawRectangle((Rectangle)shape);
 break;
 }
 }

}
private void drawCircle(Circle circle) {
...
}
private void drawRectangle(Rectangle rectangle) {
...
}

What do you think
about the design?

53

Evaluating the Design

� Adding new shapes (e.g., Triangle) is hard; we need to:
�  Implement a new realization of Shape.
� Add a new member to ShapeType.

This possibly leads to a recompile of all other realizations of Shape.
� drawAllShapes (and every method that uses shapes in a similar way)

must be changed.
Hunt for every place that contains conditional logic to distinguish
between the types of shapes and add code to it.

� drawAllShapes is hard to reuse!
When we reuse it, we have to bring along Rectangle and Circle.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

54

Rigid, Fragile, Immobile Designs

� Rigid designs are hard to change – every change causes many
changes to other parts of the system.
 Our example design is rigid: Adding a new shape causes many existing
classes to be changed.

� Fragile designs tend to break in many places when a single change is

made.
 Our example design is fragile: Many switch/case (if/else) statements
that are both hard to find and hard to decipher.

�  Immobile designs contain parts that could be useful in other

systems, but the effort and risk involved with separating those parts
from the original system are too big.
 Our example design is immobile: DrawAllShapes is hard to reuse.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

55

Evaluating the Design

� The design violates OCP with respect to extensions with new
kinds of shapes.

� We need to open our module for this kind of change by
building appropriate abstractions.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

56

An Alternative Design

New abstraction: Shape.draw()
ShapeType is not necessary anymore.

Extensibility:
Adding new shapes is easy! Just implement a new realization of Shape.
drawAllShapes only depends on Shape! We can reuse it efficiently.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 shape.draw();
 }

}

This solution
complies with OCP!

57

An Alternative Design
Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

Is this statement correct?

No, because the design is not open
with respect to other kinds of

changes.

This solution
complies with OCP!

public void drawAllShapes(List<Shape> shapes) {
 for(Shape shape : shapes) {
 shape.draw();
 }

}

58

Problematic Changes

� Consider extending the design with further shape functions
�  shape transformations,
�  shape dragging,
�  calculating of shape intersection, shape union, etc.

� Consider adding support for different operating systems.
 The implementation of the drawing functionality varies for different
operating systems.

Class Design Principles: The Open-Closed Principle (OCP) - OCP by Example

Current abstractions are
more of an hindrance to
these kinds of change.

59

2.3.4 Abstractions May Support or Hinder Change
Class Design Principles: The Open-Closed Principle (OCP)

 Change is easy if
change units
correspond to
abstraction units.

 Change is tedious
if change units do
not correspond to
abstraction units.

60

Abstractions Reflect a Viewpoint

 No matter how “open” a module is, there will always be some kind
of change that requires modifcation

Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

Reason:
There is no model
that is natural to
all contexts.

61

Viewpoints Illustrated: The Case of a Zoo

�  Imagine: Development of a "Zoo Software".

� Three stakeholders:
� Veterinary surgeon

What matters is how the animals reproduce!
� Animal trainer

What matters is the intelligence!
� Keeper

What matters is what they eat!

Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

62

One Possible Class Hierarchy

The veterinary surgeon has "won“!

Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

63

The World from Trainer’s Viewpoint

“The show shall start with the pink pelicans and the African geese flying across
the stage. They are to land at one end of the arena and then walk towards a small
door on the side. At the same time, a killer whale should swim in circles and jump

just as the pelicans fly by. After the jump, the sea lion should swim past the
whale, jump out of the pool, and walk towards the center stage where the

announcer is waiting for him.”

Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

64

Models Reflecting Different Viewpoints Overlap

� Overlapping: Elements of a category in one model correspond to several
categories in the other model and the other way around.

� Adopting the veterinary viewpoint hinders changes that concern trainer’s
viewpoint and the other way around.

Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

Our current
programming

languages and tools
do not support well
modeling the world

based on co-existing
viewpoints.

65

An Interim Take Away …
Class Design Principles: The Open-Closed Principle (OCP) - Abstractions May Support or Hinder Change

No matter how “closed” a module is, there will always be some
kind of change against which it is not closed.

66

2.3.5 Strategic and Agile Opening

Strategic Opening

� Choose the kinds of changes against which to open your module.
� Guess at the most likely kinds of changes.
� Construct abstractions to protect from those changes.

� Prescience (Voraussicht) derived from experience:
� Experienced designer hopes to know the user and an industry well

enough to judge the probability of different kinds of changes.
�  Invoke OCP for the most probable changes.

Class Design Principles: The Open-Closed Principle (OCP)

67

Be Agile …

� Guesses about likely kinds of changes that the application will suffer over
time will often be wrong.

� Conforming to OCP is expensive.
� Development time and effort to create the appropriate abstractions
� Created abstractions might increase the complexity of the design.
� Needless, Accidental Complexity.
�  Incorrect abstractions supported/maintained even if not used.

� Be agile: In doubt, wait for changes to happen. No elaborate upfront

design.

Class Design Principles: The Open-Closed Principle (OCP) - Strategic and Agile Opening

68

2.3.6 Takeaway

� Abstraction is the key to supporting OCP.

� No matter how “open” a module is, there will always be some
kind of change which requires modification.

� Limit the Application of OCP to changes that are Likely.
� After all wait for changes to happen.
� Stimulate change (agile spirit).

Class Design Principles: The Open-Closed Principle (OCP)

Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modifications.

69

Class Design Principles

� 2.1 About Class Design Principles (CDPs)
� 2.2 Single Responsibility Principle (SRP)
� 2.3 The Open-Closed Principle (OCP)
� 2.4 Liskov Substitution Principle (LSP)
� 2.5 Interface Segregation Principle (ISP)
� 2.6 Dependency Inversion Principle (DIP)

Chapter Overview

70

2.4 Liskov Substitution Principle (LSP)

Class Design Principles

Subtypes must be behaviorally substitutable for
their base types.

Barbara Liskov, 1988

71

2.4 Liskov Substitution Principle (LSP)

� 2.4.1 The Essence of LSP
� 2.4.2 Introduction to LSP by Example
� 2.4.3 The Essence of LSP Revisited
� 2.4.4 More (Realistic) Examples
� 2.4.5 Mechanisms for Supporting LSP
� 2.4.6 Advantages of Design-by-Contract
� 2.4.7 Takeaway

Class Design Principles

72

2.4.1 The Essence of LSP

� We identified class inheritance and subtype polymorphism as primary
mechanisms for supporting OCP in object-oriented designs.

� LSP provides us with design rules that govern this particular use
of inheritance and subtype polymorphism.

�  LSP:
� gives us a way to characterize good inheritance hierarchies,
�  increases our awareness about traps that will cause us to create

hierarchies that do not conform to OCP.

Class Design Principles: Liskov Substitution Principle (LSP)

73

The Essence of LSP
Class Design Principles: Liskov Substitution Principle (LSP) - The Essence of LSP

In someClientMethod, sc can be an
instance of SomeClass or any of its
subclasses.

OO (Java) subtyping rules tell us that
SomeSubclass1, SomeSubclass2 are
substitutable for SomeClass in
someClientMethod.

So what does LSP add to the
common OO subtyping rules?

void someClientMethod(SomeClass sc) {
 ...
 sc.someMethod();
 ...

}

74

The Essence of LSP
Class Design Principles: Liskov Substitution Principle (LSP) - The Essence of LSP

It’s not enough that instances of
SomeSubclass1 and SomeSubclass2
provide all methods that SomeClass

declares.
These methods should also behave like

their heirs.
someClientMethod should not be able to

distinguish objects of SomeSubclass1 and
SomeSubclass2 from objects of

SomeClass .

SLP additionally requires
behavioral substitutability.

void someClientMethod(SomeClass sc) {
 ...
 sc.someMethod();
 ...

}

75

2.4.2 Introduction to LSP by Example

� Assume we have rectangles.

� We now want to introduce squares.
 A square is mathematically a rectangle; so, we decide to implement
Square as a subclass of Rectangle.

Class Design Principles: Liskov Substitution Principle (LSP)

class Rectangle {
 public void setWidth(int width) {

 this.width = width;
 }
 public void setHeight(int height) {

 this.height = height;
 }
 public void area() { ... }

 ...
}

76

Implementing Square as a Subclass of Rectangle

 We override setHeight and setWidth to ensure that Square instances
always remain mathematically valid. We reuse the rest of Rectangle.

 This model is self-consistent! So, everything is great!

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

class Square extends Rectangle
 public void setWidth(int width) {

 super.setWidth(width);
 super.setHeight(width);

 }
 public void setHeight(int height) {

 super.setWidth(height);
 super.setHeight(height);

 }
 ...
}

Do you see any problems?

77

A Broken Client

�  Java subtyping rules tell us that we can pass Square everywhere a
Rectangle is expected.
 But, what happens if we pass a square to someClientMethod?

� someClientMethod works fine with Rectangle.
 But, it breaks when Square is passed!

� someClientMethod makes an assumption that is true for Rectangle:
setting width and height do not have mutual effects.
This assumption does not hold for Square.

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

void someClientMethod(Rectangle rec) {
 rec.setWidth(5);
 rec.setHeight(4);
 assert(rec.area() == 20);

}

A design that is self-consistent is not
necessarily consistent with clients!

78

Isn’t a Square a Rectangle?

� Not as far as someClientMethod is concerned.

� The behavior of a Square object is not consistent with the
expectations of someClientMethod on the behavior of a Rectangle.

� someClientMethod can distinguish Square objects from Rectangle
objects.

� The Rectangle/Square hierarchy violates LSP!
Square is NOT BEHAVIORALLY SUBSTITUTABLE for Rectangle.

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

79

Isn’t a Square a Rectangle?

� A square complies with mathematical properties of a rectangle.

 A square has four edges and right angles … it is mathematically a
rectangle.

� But, a Square does not comply with the expected behavior of a
Rectangle!
 Changing the height/width of a Square, behaves differently from
changing the height/width of a Rectangle.

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

80

Validity of Designs Relative to Clients

� A model viewed in isolation cannot be meaningfully validated!
 The validity of a model depends on the clients that use the model and
must be judged from their perspectives.

�  Inspecting the Square/Rectangle hierarchy in isolation did not show
any problems.
 It actually seemed to be a self-consistent design.
We had to inspect the clients to identify problems.

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

81

A LSP-Compliant Solution

� When clients use Shape as a representative for specific shapes they

cannot make any assumptions about the behavior of the methods.

� Clients that want to change properties of shapes have to work with
the concrete classes and make specific assumptions about them.

Class Design Principles: Liskov Substitution Principle (LSP) - Introduction to LSP by Example

� Rectangle and Square are
siblings.

� The interface Shape declares
common methods.

82

2.4.3 The Essence of LSP Revisited
Class Design Principles: Liskov Substitution Principle (LSP)

Let p(x) be an observable property of all objects x of type T.
Then p(y) should be true for all objects y of type S where S is a

subtype of T.

Note: “observable” means “observable by a program using type T”

83

2.4.4 More (Realistic) Examples

�  In the following,
� we will mention some examples of LSP violations in Java‘s platform

classes
� will consider a more sophisticated example

� Goal: Indicate that violations of LSP are realistic and sophisticated,
hence easy to run into them.

Class Design Principles: Liskov Substitution Principle (LSP)

84

LSP Violation “Smells”

� Derivates that override a method of the super-class by an empty

method often violate LSP.

� Derivates that document that certain methods inherited from the
super-class should not be called by clients.

� Derivates that throw additional (unchecked) exceptions violate LSP.

� …

Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

85

LSP Violations in Java Platform Classes

� Properties inherits from Hashtable

� Stack inherits from Vector

� …

� … I will leave it to you to discover more of them …

Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

Because Properties inherits from Hashtable, the put and putAll methods can be applied to a
Properties object. Their use is strongly discouraged as they allow the caller to insert entries
whose keys or values are not Strings. The setProperty method should be used instead. If the
store or save method is called on a "compromised" Properties object that contains a non-
String key or value, the call will fail.

86

The Case of Implementing a Persistent Set
Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

Consider the following scenario.
We have implemented a library of container classes, including the
interface Set (e.g. using Java 1.4). We want to extend the library with
support for persistent sets.

A third-party container class capable of
persistence, called PersistentSet, is also
available.
It accepts objects of type PersistentObject.

87

The Case of Implementing a Persistent Set
Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

We implement our persistent set in PersistentSetAdapter.
It implements Set, refers to an object of the third party class
PersistentSet, called ps, and implements the operations declared
in Set by forwarding to ps.

Looks good, doesn’t it?

88

The Problem with the Solution Idea

� Only PersistentObjects can be added to PersistentSet.
Yet, nothing in Set states this explicitly.

� A client adding elements to a set (fill method below) has no idea
whether the set is persistent and cannot know whether the elements to
fill must be of type PersistentObject.

� Passing an arbitrary object will cause the cast in
PersistentSetAdapter to fail, breaking a method that worked fine
before PersistentAdpaterSet was introduced.

Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

A method
public void fill(Set s) {

 fill-the-set-with-some-objects
}

Somewhere else...
Set s = new PersistentSetAdapter(); // Problem!
fill (s);

89

LSP Compliant Solution
Class Design Principles: Liskov Substitution Principle (LSP) - More (Realistic) Examples

Conclusion:
PersistentSetAdapter does not have a behavioral IS-A relationship to Set.
We must separate their hierarchies and make them siblings.

90

2.4.5 Mechanisms for Supporting LSP

The question is: What mechanisms can we use to support LSP?

Class Design Principles: Liskov Substitution Principle (LSP)

91

The Validation Problem

� We said:
 A model viewed in isolation cannot be meaningfully validated
with respect to LSP!
 Validity must be judged from the perspective of possible usages of the
model.

� Hence, we need to anticipate assumptions that clients make about our

models – which is de facto impossible.
Most of the times we will only be able to view our model in isolation;
 We do not know how it will be used and how it will be extended by
means of inheritance.

� Trying to anticipate them all might yield needles complexity.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP

92

2.4.5.1 Explicit Contracts for Clients and Subclasses

Solution to the validation problem:
A technique for explicitly stating what may be assumed.
Design-by-Contract.

Two main aspects of design-by-contract.
� Contracts. Classes explicitly specify properties:
�  that must be respected by subclasses
� on which clients can rely.

� Contract enforcement. Tools to check (statically or dynamically) the
implementation of subclasses against contracts of superclasses.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP

93

Specifying Explicit Contracts

Pre- and Post-conditions
� Declared for every method of the class.
� Preconditions must be true for the method to execute.
� Post-conditions must be true after the execution of the method.

Invariants
� Properties that are always true for instances of the class.
� May be broken temporarily during a method execution, but

otherwise hold.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

The programmer of a class defines a contract, that abstractly
specifies the behavior on which clients can rely on.

94

A Possible Contract for Rectangle.setWidth

� Precondition for setWidth: w > 0
� Post-condition for setWidth: getWidth() = w

 getHeight() was not changed

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

public class Rectangle implements Shape {

 private int width;
 private int height;

 public void setWidth(int w) {
 this.width = w;
 }

}

95

Enforcement or Behavioral Subtyping

� Subclasses must conform to the contract of their base class!
� This is called behavioral subtyping.
�  It ensures, that clients won’t break when instances of subclasses are

used in the guise of instances of their heirs!

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

What do you think should the subtyping rules look like?

96

Behavioral Subtyping
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

Rule for preconditions
� Preconditions may be replaced by equal or weaker ones.
� Preconditions of a class imply preconditions of subclasses.

Rule for post-conditions
� Post-conditions may be replaced equal or stronger ones.
� Post-conditions of a class are implied by those of its subclasses.

97

Behavioral Subtyping

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

Rationale for the preconditions rule
� A derived class must not impose more obligations on clients.
� Conditions that clients obey to before executing a method on an

object of the base class should suffice to call the same method on
instances of subclasses.

Rationale for the post-conditions rule
� Properties assumed by clients after executing a method on an

object of the base class still hold when the same method is
executed on instances of subclasses.

� The guarantees that a method gives to clients can only become
stronger.

98

Contracts and Types

� Contracts exceed what can be expressed using only types.

� Type systems have some desirable properties that contracts do not
have (in general)
� Static, compositional checking
� That methods adhere to their declared types
� That types of overridden methods are refined in a LSP-consistent

way
� Such as covariance for return types, contravariance for argument

types

� Some things expressed in contracts can also be expressed in more
powerful type systems
� Contracts can also be seen as part of types

� Generics and variance annotations (Java, Scala) form a powerful
specialized contract language

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

99

Behavioral Subtyping is Undecidable in General

� By Rice’s theorem any interesting property about the behavior of
programs is undecidable.

� This applies to contracts and LSP, too.

� This is not news, since already plain type checking is undecidable.

� Standard solution: Err on the safe side.

�  LSP is useful however in reasoning about the design of class
hierarchies.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

100

Languages and Tools for Design-by-Contract

� Comments as contracts.
Easy and always possible, but not machine checkable.

� Unit-tests as contracts.
Machine checkable, but not declarative, possibly cumbersome,
always incomplete (tests check only single program runs).

� Formalisms and tools for specifying contracts in a declarative
way and enforcing them.
� The Eifel language has built-in support for design-by-contracts (the

term was coined by B. Meyer).
�  Java Modeling Language (JML) uses annotations to specify pre-/post-

conditions for Java http://www.eecs.ucf.edu/~leavens/JML/
� More recent languages, e.g., IBMs X10, integrate DbC into the

language’s type system by means of dependent types (types that
depend on values).

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Explicit Contracts for Clients and Subclasses

101

2.4.5.2 Contracts in Documentation
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP

 One should document any restrictions on how a method may
be overridden in subclasses.

102

The Contract of Object.equals

� The method equals in Object implements identity-based equality
to mean: “Each instance of a class is equal only to itself”

�  Java classes may override it to implement “logical equality”.

� The documentation of Object.equals consists almost entirely of
restrictions on how it may be overridden.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

103

The Contract of Object.equals

The equals method implements an equivalence relation:

�  It is reflexive:

 For any reference value x, x.equals(x) must return true.
�  It is symmetric:

 For any reference values x and y, x.equals(y) must return true if
and only if y.equals(x) returns true.

�  It is transitive:
 For any reference values x, y, and z, if x.equals(y) returns true
and y.equals(z) returns true, then x.equals(z) must return true.

�  It is consistent:
 For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false,
provided no information used in equals comparisons on the object is
modified.

�  For any non-null reference value x, x.equals(null) must return
false.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

104

The Contract of Object.equals

� Violations of these restrictions may have dire consequences and it
can be very difficult to pin down the source of the failure.

� No class is an island.
 Instances of a class are often passed to another.

� Many classes, including all collection classes, depend on the

objects passed to them obeying the equals contract.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

105

The Contract of Object.equals
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

Read more in
http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf

“An excellent book, crammed with
good advice on using the Java

programming language and object-
oriented programming in general.”–

Gilad Bracha, coauthor of The Java™
Language Specification, Third Edition

In the following: we will discuss two
restrictions on overriding equals from
chapter 3 of the book.

106

/**
* Case-insensitive string. Case of the original string is
* preserved by toString, but ignored in comparisons.
*/
public final class CaseInsensitiveString {
 private String s;
 public CaseInsensitiveString(String s) {
 if (s == null) throw new NullPointerException();
 this.s = s;
 }

 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString)
 return s.equalsIgnoreCase(((CaseInsensitiveString)o).s);
 if (o instanceof String)
 return s.equalsIgnoreCase((String)o);
 return false;
 }
... // Remainder omitted
}

Example Implementation of equals
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

What do you think?

107

/**
* Case-insensitive string. Case of the original string is
* preserved by toString, but ignored in comparisons.
*/
public final class CaseInsensitiveString {
 private String s;
 public CaseInsensitiveString(String s) {
 if (s == null) throw new NullPointerException();
 this.s = s;
 }

 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString)
 return s.equalsIgnoreCase(((CaseInsensitiveString)o).s);
 if (o instanceof String)
 return s.equalsIgnoreCase((String)o);
 return false;
 }
... // Remainder omitted
}

Example Implementation of equals
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

BROKEN:
Violates symmetry!

One-way
interoperability!

108

Example Implementation of equals

� The problem: While CaseInsensitiveString.equals knows about
ordinary strings, String.equals is oblivious to case-insensitive strings.

� No one knows what list.contains(s) would return in the code below.
The result may vary from one Java implementation (of ArrayList) to
another.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

...
CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";
List list = new ArrayList();
list.add(cis);
...
return list.contains(s);

Once you have violated equals contract, you simply don’t know how
other objects will behave when confronted with your object.

109

The Implementation of java.net.URL.equals

� java.net.URL’s equals method violates the consistent part of
equals contract.

� The implementation of that method relies on the IP addresses of the
hosts in URLs being compared.

� Translating a host name to an IP address can require network
access, and it isn’t guaranteed to yield the same results over time.

� This can cause the URL equals method to violate the equals contract,
and it has caused problems in practice.
(Unfortunately, this behavior cannot be changed due to compatibility
requirements.)

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

110

The Imperative of Documenting Contracts

�  It is particularly important to carefully and precisely document
methods that may be overridden because one can not deduce the
intended specification from the code.

� Compare the documentation of the requirements of equals with the
implementation of equals in java.lang.Object given below!

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

public boolean equals(Object ob)
 {
 return this == ob;
 }

111

The Imperative of Documenting Contracts

� RFC 2119 defines keywords - may, should, must, etc. – which can be
used to express so-called „subclassing directives“.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

/**
 * Subclasses should override.
 * Subclasses may call super
 * New implementation should call addPage
 */

public void addPages() {...}

112

On the Quality of the Documentation

 When documenting methods that may be overridden, one
must be careful to document the method in a way that will
make sense for all potential overrides of the function.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

113

When Contracts are Too Specific

Consider the class Point2D … and its subclass Point3D

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

class Point2D {
...
 /** Indicate whether two points are equal.
 * Returns true iff the values of the respective
 * x and y coordinates of this and ob are equal.
 */

 @Override public boolean equals(Object ob) {
 if (ob instanceof Point2D) {
 Point2D other = (Point2D) ob;
 return this.x == that.x && this.y == other.y;
 }
 else
 return false;
 }
...
}

114

When Contracts are Too Specific
Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

class Point3D extends Point2D {
...

 @Override public boolean equals(Object ob) {
 if (ob instanceof Point3D) {
 Point3D other = (Point3D) ob ;
 return
 this.z == other.z && super.equals(ob3D);
 }
 else
 return super.equals(ob);
 }
...
}

What do you think about it?

Point3D violates LSP!

115

When Contracts are Too Specific

 aOrB may not behave according to our expectations when passed
two Point3D objects as parameters. Do you see why?

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

void aOrB(Point2D p, Point2D q)
{
 p.setX(x_0);
 p.setY(y_0);
 q.setX(x_1);
 q.setY(y_1);

 if (p.equals(q))
 { ... do a ...}
 else
 { ... do b ...}
}

Consider the case :
x_0 == x_1,
y_0 == y_1,

Based on the specification of
equals in Point2D, our
expectations are that the
true-sub-expression of if
will be executed in this case.
However, when p and q are
Point3D objects, and p.z !
= q.z , the else-sub-
expression will be executed
instead.

116

When Contracts are Too Specific

Point3D.equals is not really guilty for that.
The problem is rather that the expectations of the client are too
“high” due to the documentation of Point2D.equals being too specific.

Should reword the documentation of Point2D.equals to be more flexible,
e.g., “returns true iff the coordinates of the receiver and argument points
are equal”

One could also argue that Point3D should not be a subtype of Point2D

anyway.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Contracts in Documentation

117

2.4.5.3 Java Modeling Language (JML)

� A behavioral interface specification language that can be used to specify
the behavior of Java modules.

� Specifications written as Java annotation comments to the Java program,
which hence can be compiled with any Java compiler.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP

public class Rectangle implements Shape {
 private int width;
 private int height;

 /*@ requires w > 0;
 @ ensures getHeight() = \old(getHeight())

 && getWidth() = w; @*/
 public void setWidth(double w) {
 this.width = w;
 }

}

118

Java Modeling Language (JML)

Several tools exist that process JML specifications.

� An assertion-checking compiler (jmlc) - runtime verification of
assertions.

� A unit testing tool (jmlunit).

� An enhanced version of javadoc (jmldoc) that understands JML
specifications.

� Extended Static Checker (ESC/Java) is a static verification tool that
uses JML as its front-end.

Class Design Principles: Liskov Substitution Principle (LSP) - Mechanisms for Supporting LSP - Java Modeling Language (JML)

119

2.4.6 Advantages of Design-by-Contract

� Explicit statement of obligations and rights between clients and
servers.
Clients have the obligation to satisfy pre-conditions and the right to
expect post-conditions.
 … and the other way around.

� Machine checkable contracts help to avoid constantly checking

arguments.
Especially checking if an argument is null.

� Contracts as documentation and abstraction.
� Document by saying what a method require and what it ensures.
� Often machine checkable!
� Separates the interface from the implementation.

 Contract: What is done (not constructive)
 Implementation: How is it done (constructive)

Class Design Principles: Liskov Substitution Principle (LSP)

120

2.4.7 Takeaway

� Behavioral subtyping extends “standard” OO subtyping.

 Additionally ensures that assumptions of clients about the behavior of
a base class are not broken by subclasses.

� Design-by-Contract is a technique for supporting LSP.

 Makes the contract of a class to be assumed by the clients and
respected by subclasses explicit (and checkable).

� DbC does not guarantee LSP, though
� Contracts specify only a subset of the observable properties

Class Design Principles: Liskov Substitution Principle (LSP)

Subtypes must be behaviorally substitutable for their base types.
Barbara Liskov, 1988

121

Class Design Principles

� 2.1 About Class Design Principles (CDPs)
� 2.2 Single Responsibility Principle (SRP)
� 2.3 The Open-Closed Principle (OCP)
� 2.4 Liskov Substitution Principle (LSP)
� 2.5 Interface Segregation Principle (ISP)
� 2.6 Dependency Inversion Principle (DIP)

Chapter Overview

122

2.5 Interface Segregation Principle (ISP)

Class Design Principles

Clients should not be forced to depend on methods
that they do not use.

123

2.5 Interface Segregation Principle (ISP)

� 2.5.1 The Rationale Behind ISP
� 2.5.2 Introduction to ISP by Example
� 2.5.3 Proliferation of Interfaces
� 2.5.4 Takeaway

Class Design Principles

124

2.5.1 The Rationale Behind ISP

� When clients are forced to depend on methods they do not use, they

become subject to changes to these methods, which other clients
force upon the class.

� This causes coupling between all clients.

Class Design Principles: Interface Segregation Principle (ISP)

125

2.5.2 Introduction to ISP by Example

� Consider the design of a file
server system.

� The interface FileServer
declares methods provided by
any file server.

� Various classes implement this
interface for different operating
systems.

� Two clients are implemented
for the file server:
 AdminClient, which uses all
methods.
 UserClient, which uses only
the upload/download methods.

Class Design Principles: Interface Segregation Principle (ISP)

Do you see any problems?

126

Problems of the Proposed Design

� Having the option of calling changePermissions() does not make sense
when implementing UserClient.
The programmer must avoid calling it by convention instead of by design.

� Modifications to changePermissions() triggered by needs of
AdminClient may affect UserClient, even though it does not use
changePermissions().
� Mainly an issue with binary compatibility. A non-issue with dynamic

linking.

� There may be servers that do not use a permission system.
If we wanted to reuse UserClient for these servers, they would be
forced to implement changePermissions, even though it wont be used.

Class Design Principles: Interface Segregation Principle (ISP) - Introduction to ISP by Example

127

A Polluted Interface

� FileServer is a polluted interface.
�  It declares methods that do not belong together.
�  It forces classes to depend on unused methods and therefore depend on

changes that should not affect them.

�  ISP states that such interfaces should be split.

Class Design Principles: Interface Segregation Principle (ISP) - Introduction to ISP by Example

128

A ISP-Compliant Solution
Class Design Principles: Interface Segregation Principle (ISP) - Introduction to ISP by Example

129

2.5.3 Proliferation of Interfaces

�  ISP should not be overdone!
Otherwise you will end up with 2n-1 interfaces for a class with n methods.
(an argument for structural subtyping?)

� A class implementing many interfaces may be a sign of a SRP-violation!

� Try to group possible clients of a class and have an interface for each
group.

Class Design Principles: Interface Segregation Principle (ISP)

130

2.5.4 Takeaway

�  Interfaces that declare unrelated methods force clients to depend on

changes that should not affect them.

� Polluted interfaces should be split.

� But, be careful with interface proliferation.

Class Design Principles: Interface Segregation Principle (ISP)

Clients should not be forced to depend on methods
that they do not use.

131

Class Design Principles

� 2.1 About Class Design Principles (CDPs)
� 2.2 Single Responsibility Principle (SRP)
� 2.3 The Open-Closed Principle (OCP)
� 2.4 Liskov Substitution Principle (LSP)
� 2.5 Interface Segregation Principle (ISP)
� 2.6 Dependency Inversion Principle (DIP)

Chapter Overview

132

2.6 Dependency Inversion Principle (DIP)

Class Design Principles

High-level modules should not depend on low-level
modules. Both should depend on abstractions.

133

2.6 Dependency Inversion Principle (DIP)

� 2.6.1 The Rationale of DIP
� 2.6.2 Introduction to DIP by Example
� 2.6.3 Layers and Dependencies
� 2.6.4 Naive Heuristic for Ensuring DIP
� 2.6.5 Takeaway

Class Design Principles

134

2.6.1 The Rationale of DIP

High-level, low-level Modules.
Good software designs are structured into modules.
� High-level modules contain the important policy decisions and business

models of an application – The identity of the application.
�  Low-level modules contain detailed implementations of individual

mechanisms needed to realize the policy.

Class Design Principles: Dependency Inversion Principle (DIP)

High-level policy:
The abstraction that underlies the application;

the truth that does not vary when details are changed;
the system inside the system;

the metaphor.

135

The Rationale of DIP

� High-level policies and business processes is what we want to reuse.

�  If high-level modules depend on the low-level modules changes to the
lower level details will force high-level modules to change.

�  It becomes harder to use them in other contexts.

�  It is the high-level modules that should influence the low-level details

Class Design Principles: Dependency Inversion Principle (DIP) - The Rationale of DIP

136

2.6.2 Introduction to DIP by Example

� Consider a design excerpt from the smart home scenario.

� Button
�  Is capable of “sensing” whether it has been activated/deactivated by

the user.
� Once a change is detected, it turns the Lamp on respectively off.

Class Design Principles: Dependency Inversion Principle (DIP)

Do you see any problem with this design?

137

Problems with Button/Lamp

� We cannot reuse Button since it depends directly on Lamp.
But there are plenty of other uses for Button.

� Button should not depend on the details represented by Lamp.

� These are symptoms of the real problem (Violation of DIP):
� The high-level policy underlying this (mini) design is not independent of

the low-level details.

Class Design Principles: Dependency Inversion Principle (DIP) - Introduction to DIP by Example

138

The High-Level Policy

�  If the interface of Lamp is changed, Button has to be adjusted, even

though the policy that Button represents is not changed!

� To make the high-level policy independent of details we should be able
to define it independent of the details of Lamp or any other specific
device.

Class Design Principles: Dependency Inversion Principle (DIP) - Introduction to DIP by Example

The underlying abstraction is the detection of on/off
gestures and their delegation to a server object that

can handle them.

139

A DIP-Compliant Solution

� Now Button only depends on abstractions!
It can be reused with various classes that implement ButtonServer.

� Changes in Lamp will not affect Button!

� The dependencies have been inverted:
Lamp now has to conform to the interface defined by Button.

� Actually: both depend on an abstraction!

Class Design Principles: Dependency Inversion Principle (DIP) - Introduction to DIP by Example

140

A Quick Quiz

� Three subprograms: Regulate calls the other two.
� Regulate pulls data about the current temperature from the
Thermometer component and

� Regulate signals the Furnace component to increase or decrease heat.

Class Design Principles: Dependency Inversion Principle (DIP) - Introduction to DIP by Example

Does it conform to DIP?

If not, how would you make it DIP-compliant?

141

Answer to the Quiz
Class Design Principles: Dependency Inversion Principle (DIP) - Introduction to DIP by Example

142

2.6.3 Layers and Dependencies

 A possible interpretation of Booch’s statement...

Class Design Principles: Dependency Inversion Principle (DIP)

Grady Booch
„…all well-structured object-oriented architectures have clearly
defined layers, with each layer providing some coherent set of

services through a well-defined and controlled interface…“

The higher the module is
positioned in a layered
architecture, the more general
the function it implements.
The lower the module, the
more detailed the function it
implements.

What do you think about this interpretation?

143

Layers and Dependencies
Class Design Principles: Dependency Inversion Principle (DIP) - Layers and Dependencies

This interpretation clearly violates DIP. Higher-level modules depend
on lower-level modules.

This is actually a typical structure of a layered architecture realized
with structured programming.

A possible interpretation of Booch’s statement...

144

Inverted Layer Dependencies

� An upper-layer declares (owns) interfaces for services it needs.
�  Lower-layer implements these interfaces.
� Upper-layer uses lower-layer by the interface.

The upper layer does not depend on the lower-layer.
�  Lower-layer depends on the interface declared by the upper-layer.

Class Design Principles: Dependency Inversion Principle (DIP) - Layers and Dependencies

� Usually, we think of
utility libraries as owning
their own interfaces.

� A relict from structured
programming era.

� Due to ownership
inversion, Policy is
unaffected by changes in
Mechanism or Utility.

145

2.6.4 Naive Heuristic for Ensuring DIP

DO NOT DEPEND ON A CONCRETE CLASS.

 All relationships in a program should terminate on an abstract class
or an interface.

� No class should hold a reference to a concrete class.
� No class should derive from a concrete class.
� No method should override an implemented method of any of its

base classes.

Class Design Principles: Dependency Inversion Principle (DIP)

146

Naive Heuristic for Ensuring DIP

DO NOT DEPEND ON A CONCRETE CLASS.

� This heuristic is usually violated at least once in every program.
� Some class will have to create concrete classes.
� Subclass relationships do often terminate at a concrete class.

� The heuristic seems naive for concrete stable classes, e.g., String in Java.
� But, concrete application classes are generally volatile, should not depend

on them. Their volatility can be isolated:
� by keeping them behind abstract interfaces
�  that are owned by clients.

Class Design Principles: Dependency Inversion Principle (DIP) - Naive Heuristic for Ensuring DIP

147

2.6.5 Takeaway

� Traditional structural programming creates a dependency structure in which policy
depends on detail.
(Policies become vulnerable to changes in the details.)

� Object-orientation enables to invert the dependency:
� Policy and details depend on abstractions.
� Service interfaces are owned by their clients.
�  Inversion of dependency is the hallmark of good object-oriented design.

(Implies an inversion of interface ownership.)

�  Rationale behind DIP is arguable. For example, what if existing 3rd party (low-level) libraries are
used?
�  One can argue that DIP enables an adapter layer which stops propagation of changes

Class Design Principles: Dependency Inversion Principle (DIP)

High-level modules should not depend on low-level
modules. Both should depend on abstractions.

