
Software Design &
Programming Techniques

Prof. Dr. Klaus Ostermann
University of Tübingen

Based on slides by Prof. Dr. Mira Mezini

Introduction

2

Introduction

� 1.1 This Course in a Broader Context
� 1.2 Software versus Hardware Engineering
� 1.3 Consequences of the Cheap Build
� 1.4 This Course in a Nutshell

Chapter Overview

3

1.1 This Course in a Broader Context

Introduction

4

1.1 This Course in a Broader Context

� 1.1.1 Why Software Engineering

Introduction

5

1.1.1 Why Software Engineering

� The term Software Engineering was coined in 1968
 At the NATO Software Engineering Conferences.
 1968 (Garmisch, Germany) and 1969 (Rom, Italy)

Introduction: This Course in a Broader Context

6

Software Crisis

 Discussion triggered by the Software Crisis in the 60th.
 Projects were running over-budget or never delivered at all.
 Software was inefficient and often did not meet requirements.

Introduction: This Course in a Broader Context - Why Software Engineering

[The major cause of the software crisis is] that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long
as there were no machines, programming was no problem at all; when we
had a few weak computers, programming became a mild problem, and now
we have gigantic computers, programming has become an equally gigantic
problem.

Edsger Dijkstra, 1972

7

Software Crisis

� Since computers have become more powerful, more complex software is
possible and more complex programs (more requirements) are
requested to be developed!

� Experience in creating big software systems was not available!
�  How to keep code maintainable?
�  How to satisfy extensive and changing requirements?
�  How to work on code as a team?

Introduction: This Course in a Broader Context - Why Software Engineering

8

Software Construction as Engineering

� Rather than ad-hoc problem solving…

Introduction: This Course in a Broader Context - Why Software Engineering

� Goal of NATO Software Engineering Conferences:
 Adopt Hardware *) Engineering approaches for Software Engineering

*) In this lecture: Hardware is a physical, non-software product of engineering.

9

Software Construction as Engineering

 CMU SEI (Software Engineering Institute) defines “Software
Engineering” relative to “Engineering”:

� Engineering is the systematic application of scientific knowledge in
creating and building cost-effective solutions to practical problems in
the service of mankind.

� Software engineering is that form of engineering that applies the
principles of computer science and mathematics to achieving cost-
effective solutions to software problems.

Introduction: This Course in a Broader Context - Why Software Engineering

10

Software Engineering Today

� Software Engineering methods have made huge progress since the 60th.

� Today we have:
� Sophisticated methods and tools for requirement engineering
� Best practices, high-level architecture styles
�  Formal modeling techniques and visual and design notations
� Potent high-level programming languages
� Potent quality assurance methods, techniques and tools
� Advanced process and project management methodologies
� Advanced development environments
� …

Introduction: This Course in a Broader Context - Why Software Engineering

11

Software Engineering Today … L
Introduction: This Course in a Broader Context - Why Software Engineering

12

Software Engineering Today

� Software Engineering methods have made huge progress since the 60th.

� But: Advances in technology drive more complex requirements and
business agility!
Multimedia, Networking, Security, Embedded Systems, Usability,
Reusability, Accessibility, Concurrency ...
 Continuously rapidly changing requirements…

� No wonder, we still observe the symptoms of the Software Crisis!
� A crisis that continues for 50 years is not a crisis but the normality!

� Studying and advancing SE foundations, methods, notations,
tools, is extremely important.

Introduction: This Course in a Broader Context - Why Software Engineering

13

1.2 Software versus Hardware Engineering

Introduction

14

Hardware Engineering (Simplistic View)

� Clear distinction between designing and building (manufacturing)
a product.
Design and build done by different teams with different skills.

� When a design effort is complete, the design documentation is
turned over to the manufacturing team.
 Manufacturing team can proceed to build (lots of) the product, without
further intervention of designers.

� Manufacturing is a labor intensive expensive process.

� Considerable time is spent in validating and refining designs
before they are build.
Simulations based on theoretical models are used to ensure the quality
of the design.

Introduction: Software versus Hardware Engineering

15

Hardware Engineering (Simplistic View)
Introduction: Software versus Hardware Engineering

Design

Product

1st Phase: Analyzing
The problem to solve is analyzed and
documented.

2nd Phase: Designing and Validation
Engineers translate the requirements into a
detailed description of the solution using
models and rigorously validate these models.

3rd Phase: Building
Workers build the design using appropriate
tools and materials.

Requirements

16

Example: Building a House
Introduction: Software versus Hardware Engineering

1st Phase: Analyzing
Customer specifies location and properties of
the desired house.

2nd Phase: Designing
Architect designs the house on paper using
geometry and statics.

3rd Phase: Building
Construction Workers build the house.

Design

Product

Requirements

17

Software Eng. Derived from Hardware Eng.
Introduction: Software versus Hardware Engineering

1st Phase: Analyzing
The problem to solve is analyzed and
documented.

2nd Phase: Designing
Software Engineers design the software using
abstract formal or semi formal models
(formal specification, UML-based designs,
etc).

3rd Phase: Building
Programmers implement the design using a
programming language.

Design

Product

Requirements

18

Software Eng. Derived from Hardware Eng.
Introduction: Software versus Hardware Engineering

1st Phase: Analyzing
The problem to solve is analyzed and
documented.

2nd Phase: Designing
Software Engineers design the software using
abstract formal or semi formal models
(formal specification, UML-based designs,
etc).

3rd Phase: Building
Programmers implement the design using a
programming language.

Design

Product

Requirements

What do you think?

19

To Code is Also to Design

� The executable code is the ultimate design document!
� Programming is about designing.
� Simulating software is unnecessary or even impossible.
� Agile techniques like trial-and-error are possible.

Introduction: Software versus Hardware Engineering

Hardware Software
§  Product is a physical object
§  Built (mostly) by people
§  Building

§  is expensive
§  labor & material intensive
§  slow
§  hard to redo

§  The product is the binary
§  Built by compilers and linkers
§  Building

§  is extremely cheap
§  automatic, no materials
§  very fast
§  easily to redo

Requirements

Design

Product

Designing

Building

Conclusions

20

Code as THE Software Engineering Document …
Introduction: Software versus Hardware Engineering

Out of all the documentations that software projects normally generate, is
there anything that can truly be considered an engineering document?

...I concluded that the only software documentation that actually seems to
satisfy the criteria of an engineering design is the source code listings.

...there is one consequence of considering code as software design that
completely overwhelms all others. It is so important and so obvious that it
is a total blind spot for most software organizations. This is the fact that
software is cheap to build.
Programming is not about building the software. Programming is about
designing software.

Jack Reeves, To Code is to Design, C++ Report 1992

21

Peter Naur on the Design-Production Separation …
Introduction: Software versus Hardware Engineering

The distinction between design and production is essentially a practical one,
imposed by the need for a division of the labor. In fact, there is no essential
difference between design and production, since even the production will
include decisions which will influence the performance of the software
system, and thus properly belong in the design phase.

Peter Naur, NATO Software Engineering Conference 1968 http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/

22

Interim Conclusion

� The SW industry is not likely to find solutions to its problems by trying
to blindly emulate HW developers.
 BTW, complex HW engineering is not as free of bugs…bridges collapsed,
airliners fallen out of the sky, consumer products have been recalled …

� As CAD and CAM systems have helped HW designers to create more
and more complex designs, as software is becoming more and more
important, system engineering is becoming more and more like SW
development.

Introduction: Software versus Hardware Engineering

23

1.3 Consequences of the Cheap Build

Introduction

24

1.3 Consequences of the Cheap Build

� 1.3.1 Complexity and Change are Invariants
� 1.3.2 Everything is Part of the Design
� 1.3.3 Auxiliary Documentation
� 1.3.4 Development Processes Should be Agile
� 1.3.5 Programming Languages as Design Languages

Introduction

25

1.3.1 Complexity and Change are Invariants

� SW designs tend to be incredibly large and complex
� Typical commercial SW products have designs that consist of

hundreds of thousands of lines. Many run into the millions.
� More complex designs are targeted every day.

� SW designs are constantly evolving
� The current design may only be a few thousand LOC … many times

that may actually have been written over the life of the product.
� A software product spends around 80% of its lifetime in maintenance.

Introduction: Consequences of the Cheap Build

Designing for organizing complexity and facilitating
change is the key to support maintainability

26

1.3.2 Everything is Part of the Design

� There are different levels of design
� High-level architectural design
� Class-level design
�  Low(implementation)-level detailed design

� We need good SW design at all levels.
� The better the early design, the easier to do detailed design, the better

its quality.

� Yet, the high-level design is not a complete software design but
just a structural framework for the detailed design.

Introduction: Consequences of the Cheap Build

27

The Final Design is Code

� SW design is not complete until it is coded and tested!

� Designers should use anything that helps: user stories, Z specs, UML
diagrams, etc.

� These are all useful notations for facilitating the design process and as
auxiliary documentation.

� Yet, they are not a software design!

� The real design will be created using some programming language …
ultimately the final design is code!

Introduction: Consequences of the Cheap Build - Everything is Part of the Design

28

The Final Design is Code

� Designs should be coded as they are derived and be refined when
necessary.
� The process of rendering the design in code reveals oversights and the

need for additional design effort.
� The earlier it occurs, the better the design will be.

� The detailed design will ultimately influence (or should be allowed to
influence) the high-level design.

� Refining all the aspects of a design is a process that should be happening
throughout the design cycle.

Introduction: Consequences of the Cheap Build - Everything is Part of the Design

29

Testing and Debugging is Design

�  If we consider source code as design, we see that software engineers
(just like other engineers) also do a considerable amount of validating
and refining their designs.

� Most SW designers do not call it engineering … rather testing and
debugging, i.e., do not consider testing and debugging as real
"engineering“ due to refusal of SW industry to accept code as the
actual design.

Introduction: Consequences of the Cheap Build - Everything is Part of the Design

Testing is not just concerned with getting the current
design correct, it is part of refining the design.

30

1.3.3 Auxiliary Documentation

 … Obviously the actual design documents (entailed in code) are the most
important, but not the only one that must be produced.

Introduction: Consequences of the Cheap Build

Auxiliary documentation (directly associated with the
design process) is as important for a SW project as it is

for a HW project.

31

Auxiliary Documentation Should …

� … capture information from the problem space that did not make it
directly into the design.
�  Inventing SW concepts to model concepts in a problem space requires

an understanding of the essential problem space concepts.
� Usually this process involves information that does not directly end up

being modeled in the SW space.

� … document those aspects of the design that are difficult to extract
directly from the design itself.
� Many of these aspects are best depicted graphically. This makes them

hard to include as comments in the source code.
� This is not an argument for a graphical software design notation instead

of a programming language.
� Not different from the need for textual descriptions to accompany the

design documents of other engineering disciplines.

Introduction: Consequences of the Cheap Build - Auxiliary Documentation

32

Up-to-Date Auxiliary Documentation

� Keeping auxiliary documentation up to date manually is difficult.
� This is an argument for more expressive programming languages.
�  It is an argument for keeping auxiliary documentation to a minimum

and as informal as possible until as late in the project as possible.

� Auxiliary documentation written after code is more accurate.
� Only the design reflected in code has been refined during the build/

test cycle!
� The probability of the initial design being unchanged during this cycle

is inverse to the number of modules and programmers on a project.

�  Ideally, software tools that post-process a source code design and
generate auxiliary documentation should be available.

Introduction: Consequences of the Cheap Build - Auxiliary Documentation

33

1.3.4 Development Processes Should be Agile
Introduction: Consequences of the Cheap Build

TO CODE IS TO DESIGN.
Which doesn‘t mean that you should start coding right away!

34

“Traditional” Software Development Processes

� Software development process (just process when context is clear): The
set of activities and associated results that produce a software product

Introduction: Consequences of the Cheap Build - Development Processes Should be Agile

� Traditional process segregate
different phases

� High-level design
completed and frozen
before any code is written

� Testing and debugging
just to weed out
construction mistakes

35

“Traditional” Software Development Processes

�  In between are programmers – the construction workers of the SW
industry …
 “… if we could just get programmers to quit "hacking" and "build" the
designs as given to them (and in the process, make fewer errors) then
software development might mature into a true engineering discipline”

� Not likely to happen as long as the process ignores the engineering and
economic realities.

Introduction: Consequences of the Cheap Build - Development Processes Should be Agile

 Instead of forcing SW development to conform to an
incorrect process model, we need processes that help
rather than hinder efforts to produce better software.

36

A Good Development Process …

� … recognizes programming as a design activity and does not
hesitate to code when coding makes sense.

� … recognizes testing and debugging as design activities - the SW
equivalent of design validation and refinement of other engineering
disciplines - and does not shorten the steps.

� … recognizes that there are other design activities - top level
design, module design, class design, etc. - and deliberately includes the
steps.

� … recognizes that all design activities interact and allows the design to
change as various steps reveal the need.

Introduction: Consequences of the Cheap Build - Development Processes Should be Agile

37

1.3.5 Programming Languages as Design Languages

Introduction: Consequences of the Cheap Build

If to code is to design, then
Programming Languages are Design Languages too!

38

Programming Languages are Design Languages

� Programming languages outperform other design notations in their
capability to express both high-level and detailed design

� Hence, high-level design notations have to be translated into the target
programming language before detailed design can begin.

� The translation is time consuming and error prone since a design notation
may not map cleanly into the programming language of choice

� Programmers often go back to the requirements and redo the high-level
design, coding it as they go.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

Desired:
 Unified design notation suitable for all levels of design, i.e., programming

languages that are suitable for capturing high-level design.

39

Making Code Look Like Design

 In the following we examine the development of programming
languages as a process that was driven by the need to make
programming languages capable of capturing higher-level designs …

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

Assembler-like Languages

Structured Programming

Modular Programming

Object-Oriented Programming

40

1.3.5.1 “Designing” in Pseudo-Assembler
Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

i = 1
TEST: if i< 4

 then goto BODY
 else goto END

BODY: print i
i = i + 1

 goto TEST
END:

What does this program do?

It just prints "123" out!

i = 1
LOOP: print i
i = i + 1

 if i< 4 goto LOOP
END:

What does this program do?

It just prints "123" out!

41

GOTOs with Style …

� Good style!
� Clear structure. No crossing gotos. Better names.
� Code structure reflects closer to what we want to express.

"Print out i, i smaller than 4“
� Code is easier to understand, debug, change.

� But: Style can only be recommended, not enforced!

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - “Designing” in Pseudo-Assembler

i = 1 INITIALIZE COUNTER
LOOP: print i LOOP START

 i = i + 1 INCREASE COUNTER
 if i < 4 goto LOOP LOOP CONDITION

END:

42

1.3.5.2 Structured Programming

� Developed in the 60th to support better structuring of code.
� Gotos replaced by loops (while, for) and conditionals (if/else).
� New words, new grammars, new abstractions enable to directly express

looping/conditional computations, instead of emulating them by jumps.

� Further, procedures were introduced to support user-defined
abstractions.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

Style gets enforced!
There is no way to write crossing gotos!

i = 1
while (i < 4) {

 print(i)
 i = i + 1

}

43

Better Languages, More Challenging Tasks…
Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Structured Programming

Let’s “develop” a simple image browser with structured programming…

44

Structured Code for Image Browser

Code structured into procedures.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Structured Programming

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”, “Dogfish”})
 q = button_menu({“Quit”})
 while (! check_buttons(q)) {
 n = check_buttons(m)
draw_image(n)
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

set_y (y) {
 current_y = y
}

set_x (x) {
 current_x = x
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

45

Retracting the Structured Code

Code is structured, but procedures are not!

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Structured Programming

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”, “Dogfish”})
 q = button_menu({“Quit”})
 while (! check_buttons(q)) {
 n = check_buttons(m)
draw_image(n)
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

set_y (y) {
 current_y = y
}

set_x (x) {
 current_x = x
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

46

Structured Programming with Style

� Group procedures according to the functionality they implement and the
state that they access
� E.g. by naming conventions …
� The code is closer to what we want to express.

"main calls gui, gui calls graphic to draw, …“
� The code is easier to understand, debug and change.

� And again: Can only be recommended, not enforced!

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Structured Programming

main ()

gui_radio_menu(labels)

gui_radio_button(n)

gui_button_menu(labels)

graphic_draw_label (string)

graphic_draw_circle (x, y, r)

graphic_draw_image (img)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

47

1.3.5.3 Modular Programming

�  Introduced modules, higher-level units.
� Programming language mechanisms for supporting information hiding:

Interface hides module internals.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

module gui {
 exports:
 radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)
}

48

Module-Based Abstraction

� Modules introduce higher-level abstractions!
� One can handle a whole module as if it was its interface.

� Abstraction enables to:
�  look at the overall structure of the system (architectural thinking)

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

menus

graphics

haida_browser

49

Module-Based Abstraction

� Modules introduce higher-level abstractions!
� One can handle a whole module as if it was its interface.

� Abstraction enables to:
�  look at the overall structure of the system (architectural thinking)
�  zoom in individual units as needed

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

graphics

haida_browser

menus:
 radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)

50

Module-Based Abstraction

� Modules introduce higher-level abstractions!
� One can handle a whole module as if it was its interface.

� Abstraction enables to:
�  look at the overall structure of the system (architectural thinking)
�  zoom in individual units as needed
� with more or less details

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

menus

graphics

haida_browser:
 main () {
 draw_label(“Haida Browser”);
 m = radio_menu(
 {“Whale”, “Eagle”, “Dogfish”});
 q = button_menu({“Quit”});
 while (! check_buttons(q)) {
 n = check_buttons(m);
 draw_image(n);
 }
 }

51

Abstraction is the Key to Managing Complexity

� Abstraction means ignoring detailed information to focus on relevant
information.

� Abstraction mechanisms of programming languages enable us to
compose primitive units into more complex ones, give the latter a name
and handle them as being primitives in the next composition level.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

52

Abstraction is the Key to Managing Complexity

� Makes the code easier to understand, debug and change.
� Allows structured organization of code.
� Ability to ignore details.

� Makes the code closer to what we want to express.
"Write what you mean"

�  In essence: Abstraction mechanisms enable us to code and design

simultaneously!

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

53

Better Languages, More Challenging Tasks…
Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Modular Programming

Let’s “develop” application
families with sophisticated
GUIs with uniform look and
feel with modular
programming…

Great variability: checkbox button, toolbar button, toggle button, radio
button …

Modeling variability with modular programming appeared complex…

The need to better model variability eventually lead to object-oriented
programming.

54

1.3.5.4 Object-Oriented Programming

�  Introduces new abstractions mechanisms:
 Classes, Inheritance, Subtype polymorphism.

�  Roots in the 60ties!

�  Leading programming paradigm today!
� Recently in combination with functional programming

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

Smalltalk
Alan Kay
70 – 80

Simula
Dahl & Nygaard
64, 68

55

Popularity of OO Languages

� OO languages are popular because they make it easy to design
software and program at the same time.

� They allow us to more directly express high level information about
design components abstracting over differences of their variants

� Makes it easier to produce the design, and easier to refine it later
� With stronger type checking, they also help in the process of detecting

design errors.
� This results in a more robust design, in essence a better engineered

design.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Object-Oriented Programming

56

1.3.5.5 Summary
Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages

… improvements in programming techniques and programming
languages in particular are overwhelmingly more important than
anything else in the software business …
… programmers are interested in design … when more expressive
programming languages become available, software developers will
adopt them.

Jack Reeves, To Code is to Design, C
++ Report 1992

57

Programming Paradigms are not a Panacea

� Accessibility of object-oriented
programming drives more complex
designs!

� Programming languages are
powerful tools, but cannot
guarantee good designs.

� Programming still needs to be done
properly to result in good code.

� Human creativity remains the main
factor.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Summary

58

The Imperative of Good Style

� We still need good style to cope with complexity!
� Help is provided through established practices and techniques, design

patterns and principles.

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Summary

59

The Imperative of Good Style

� But, keep in mind…

� Good style can only be recommended, not enforced!
� Style rules will be more effective if they can be expressed and

abstracted over within the code.
� Styles and patterns as

drivers for language design

Introduction: Consequences of the Cheap Build - Programming Languages as Design Languages - Summary

60

1.4 This Course in a Nutshell

Introduction

61

Consequences of the Cheap Build for this Course

� Designing means for us structuring code in modular way so as to
support managing complexity and continuous change.
 We will actually talk about design expressed in object-oriented and
functional languages (mostly Java, with some Scala and Haskell thrown
in).

� We will adopt an agile design process to accommodate change in the
design process.

� We will adopt test-driven development, as we consider testing to be
part of design!

�  Languages as design notations will be in focus as much as design

principles and styles.

Introduction: This Course in a Nutshell

62

Tentative Content Overview

� Class Design Principles
� Design Patterns
�  Frameworks
� Package Design Principles
� Aspect-Oriented Programming
� Generic Programming
� Domain-Specific Languages

63

Organization

� Tentative Homepage:
 https://github.com/klauso/SDPT2014

� Exercises
� Start next week (Friday, Oct 24)
� Exercises have to be submitted regularly to be admitted for the exam
� Details will be determined next week

�  Lecture
� No lecture next week; next lecture is on Wed, Oct 29

Introduction

64

On Questions

� Please ask questions during the lectures!
� The main advantage of the lecture over books is that I can answer your

questions!
�  I‘ll get an impression of whether I‘m too slow or too quick.
� Questions slow me down. They make lectures more interesting to both

you and me.
�  It is your time. Don‘t waste it in the lecture if you rather want to do

something else.
� Get the most out of this course!

65

Summary

� Software engineering (SE) is about systematic software development.

� SE compared to other engineering disciplines:
 The cheap build process as the distinguishing feature.

� Consequences of the cheap build process:
 SW designs are complex and change is a constant,
 Everything is part of the design, to code/to test is to design,
 Development processes should be agile,
 Programming languages are design languages too.

� Goals of the course
 Learn programming techniques, design principles and patterns for
structuring code to manage complexity and accommodate change.
 Get to know about new trends in language technology beyond OO.

Introduction: This Course in a Nutshell

