
Programming Languages and Types

Klaus Ostermann

based on slides by Benjamin C. Pierce

Subtyping

Motivation

With our usual typing rule for applications

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.

Polymorphism

A polymorphic function may be applied to many different types of
data.

Varieties of polymorphism:

I Parametric polymorphism (ML-style)

I Subtype polymorphism (OO-style)

I Ad-hoc polymorphism (overloading)

Our topic for today is subtype polymorphism, which is based on
the idea of subsumption.

Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the
other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

` {x=0,y=1} : {x:Nat}

and hence
(λr:{x:Nat}. r.x) {x=0,y=1}

is well typed.

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.

The Subtype Relation: Records

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

The types of individual fields may change.

Example

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-RcdWidth
{m:Nat} <: {}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

I A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

I Changed in Java 5, covariant return types now allowed.

I Each class has just one superclass (“single inheritance” of
classes)

−→ each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

I A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
I.e., permutation is allowed for interfaces.

The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S1→S2, then we know
that f accepts elements of type S1; clearly, f will also accept
elements of any subtype T1 of S1. The type of f also tells us that
it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of
type S1→S2 can also be viewed as having type T1→T2.

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.

The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Properties of Subtyping

Safety

Statements of progress and preservation theorems are unchanged
from λ→.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-Sub could appear anywhere.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations - see textbook.

Inversion Lemma for Typing

Lemma: If Γ ` λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ` s2 : T2.
Proof: Induction on typing derivations - see textbook.

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ` t1 : S

Γ ` t1 as T : T
(T-Cast)

` v1 : T

v1 as T −→ v1
(E-Cast)

Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>

(S-VariantPerm)

Γ ` t1 : T1

Γ ` <l1=t1> : <l1:T1>
(T-Variant)

Subtyping and Lists

S1 <: T1

List S1 <: List T1
(S-List)

I.e., List is a covariant type constructor.

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

We have not discussed typing of references in detail; informally
think of a value of type Ref T as a box or variable of type T.

Ref is not a covariant (nor a contravariant) type constructor.
Why?

I When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

I When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.

Algorithmic Subtyping

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

If we are given some Γ and some t of the form t1 t2, we can try
to find a type for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (Γ and t)
and output positions (T).

I For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

I For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” Γ and t, there is only one rule
that can be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

−→ no backtracking!

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-Sub)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!
(If we translated the typing rules naively into a typechecking
function, the case corresponding to T-Sub would cause
divergence.)

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.

To implement this rule naively, we’d have to guess a value for
U!

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.

−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

Developing an algorithmic
subtyping relation

Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Issues

For a given subtyping statement, there are multiple rules that
could be used last in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and
S-RcdPerm overlap with each other.

2. S-Refl and S-Trans overlap with every other rule.

Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one “macro
rule” that captures all of their effects

{li i∈1..n} ⊆ {kj j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

Simpler subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li i∈1..n} ⊆ {kj j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Step 2: Get rid of reflexivity

Observation: S-Refl is unnecessary.

Lemma: S <: S can be derived for every type S without using
S-Refl.

Even simpler subtype relation

S <: U U <: T

S <: T
(S-Trans)

{li i∈1..n} ⊆ {kj j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Step 3: Get rid of transitivity

Observation: S-Trans is unnecessary.

Lemma: If S <: T can be derived, then it can be derived without
using S-Trans.

“Algorithmic” subtype relation

Ì S <: Top (SA-Top)

Ì T1 <: S1 Ì S2 <: T2

Ì S1→S2 <: T1→T2
(SA-Arrow)

{li i∈1..n} ⊆ {kj j∈1..m} for each kj = li , Ì Sj <: Ti

Ì {kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(SA-Rcd)

Soundness and completeness

Theorem: S <: T iff Ì S <: T.

Terminology:

I The algorithmic presentation of subtyping is sound with
respect to the original if Ì S <: T implies S <: T.
(Everything validated by the algorithm is actually true.)

I The algorithmic presentation of subtyping is complete with
respect to the original if S <: T implies Ì S <: T.
(Everything true is validated by the algorithm.)

Subtyping Algorithm (pseudo-code)

The algorithmic rules can be translated directly into code:

subtype(S, T) =

if T = Top, then true
else if S = S1→S2 and T = T1→T2

then subtype(T1, S1) ∧ subtype(S2, T2)
else if S = {kj:Sj

j∈1..m} and T = {li:Ti
i∈1..n}

then {li i∈1..n} ⊆ {kj j∈1..m}
∧ for all i ∈ 1..n there is some j ∈ 1..m with kj = li

and subtype(Sj , Ti)
else false.

Algorithmic Typing

Algorithmic typing

I How do we implement a type checker for the lambda-calculus
with subtyping?

I Given a context Γ and a term t, how do we determine its type
T, such that Γ ` t : T?

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

We observed above that this rule is sometimes required when
typechecking applications:

E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

But we conjectured that applications were the only critical uses of
subsumption.

Plan

1. Investigate how subsumption is used in typing derivations by
looking at examples of how it can be “pushed through” other
rules

2. Use the intuitions gained from this exercise to design a new,
algorithmic typing relation that

I omits subsumption
I compensates for its absence by enriching the application rule

3. Show that the algorithmic typing relation is essentially
equivalent to the original, declarative one

Example (T-Sub with T-Abs)

...

Γ, x:S1 ` s2 : S2

...

S2 <: T2
(T-Sub)

Γ, x:S1 ` s2 : T2
(T-Abs)

Γ ` λx:S1.s2 : S1→T2

becomes
...

Γ, x:S1 ` s2 : S2
(T-Abs)

Γ ` λx:S1.s2 : S1→S2

(S-Refl)
S1 <: S1

...

S2 <: T2
(S-Arrow)

S1→S2 <: S1→T2
(T-Sub)

Γ ` λx:S1.s2 : S1→T2

Example (T-Sub with T-Rcd)

for each i

...

Γ ` ti : Si

...

Si <: Ti
(T-Sub)

Γ ` ti : Ti
(T-Rcd)

Γ ` {li =ti
i∈1..n} : {li:Ti

i∈1..n}

Intuitions

These examples show that we do not need T-Sub to “enable”
T-Abs or T-Rcd: given any typing derivation, we can construct a
derivation with the same conclusion in which T-Sub is never used
immediately before T-Abs or T-Rcd.

What about T-App?
We’ve already observed that T-Sub is required for typechecking
some applications. So we expect to find that we cannot play the
same game with T-App as we’ve done with T-Abs and T-Rcd.
Let’s see why.

Example: T-App with (T-Sub on the left)

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12
(S-Arrow)

S11→S12 <: T11→T12
(T-Sub)

Γ ` s1 : T11→T12

...

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11
(T-Sub)

Γ ` s2 : S11
(T-App)

Γ ` s1 s2 : S12

...

S12 <: T12
(T-Sub)

Γ ` s1 s2 : T12

Example: T-App with (T-Sub on the right)

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11
(T-Sub)

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : T11→T12

...

T2 <: T11
(S-Refl)

T12 <: T12
(S-Arrow)

T11→T12 <: T2→T12
(T-Sub)

Γ ` s1 : T2→T12

...

Γ ` s2 : T2
(T-App)

Γ ` s1 s2 : T12

Intuitions

So we’ve seen that uses of subsumption can be “pushed” from one
of immediately before T-App’s premises to the other, but cannot
be completely eliminated.

Example (nested uses of T-Sub)

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

becomes

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T

Summary

What we’ve learned:
I Uses of the T-Sub rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-App or
2. the root fo the derivation tree.

I In both cases, multiple uses of T-Sub can be collapsed into a
single one.

This suggests a notion of “normal form” for typing derivations, in
which there is

I exactly one use of T-Sub before each use of T-App

I one use of T-Sub at the very end of the derivation

I no uses of T-Sub anywhere else.

Algorithmic Typing

The next step is to “build in” the use of subsumption in
application rules, by changing the T-App rule to incorporate a
subtyping premise.

Γ ` t1 : T11→T12 Γ ` t2 : T2 ` T2 <: T11

Γ ` t1 t2 : T12

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just
before applications (in the right-hand premise) or at the very
end

2. replace uses of T-App with T-Sub in the right-hand premise
by uses of the extended rule above

This yields a derivation in which there is just one use of
subsumption, at the very end!

Minimal Types

But... if subsumption is only used at the very end of derivations,
then it is actually not needed in order to show that any term is
typable!
It is just used to give more types to terms that have already been
shown to have a type.

In other words, if we dropped subsumption completely (after
refining the application rule), we would still be able to give types
to exactly the same set of terms — we just would not be able to
give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a
unique, minimal type to each typable term.

For purposes of building a typechecking algorithm, this is enough.

Final Algorithmic Typing Rules

x:T ∈ Γ

Γ Ì x : T
(TA-Var)

Γ, x:T1 Ì t2 : T2

Γ Ì λx:T1.t2 : T1→T2
(TA-Abs)

Γ Ì t1 : T1 T1 = T11→T12 Γ Ì t2 : T2 Ì T2 <: T11

Γ Ì t1 t2 : T12
(TA-App)

for each i Γ Ì ti : Ti

Γ Ì {l1=t1 . . . ln=tn} : {l1:T1 . . . ln:Tn}
(TA-Rcd)

Γ Ì t1 : R1 R1 = {l1:T1 . . . ln:Tn}

Γ Ì t1.li : Ti
(TA-Proj)

Soundness and Completeness of the algorithmic rules

Theorem: If Γ Ì t : T, then Γ ` t : T.

Theorem : If Γ ` t : T, then Γ Ì t : S for some S <: T.

Meets and Joins

Adding Booleans

Suppose we want to add booleans and conditionals to the language
we have been discussing.
For the declarative presentation of the system, we just add in the
appropriate syntactic forms, evaluation rules, and typing rules.

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

A Problem with Conditional Expressions

For the algorithmic presentation of the system, however, we
encounter a little difficulty.

What is the minimal type of

if true then {x=true,y=false} else {x=true,z=true}

?

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an expression

if t1 then t2 else t3

any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the least common
supertype (or join) of the minimal type of t2 and the minimal type
of t3.

Γ Ì t1 : Bool Γ Ì t2 : T2 Γ Ì t3 : T3

Γ Ì if t1 then t2 else t3 : T2 ∨ T3
(T-If)

Does such a type exist for every T2 and T3??

Existence of Joins

Theorem: For every pair of types S and T, there is a type J such
that

1. S <: J

2. T <: J

3. If K is a type such that S <: K and T <: K, then J <: K.

I.e., J is the smallest type that is a supertype of both S and T.

Examples

What are the joins of the following pairs of types?

1. {x:Bool,y:Bool} and {y:Bool,z:Bool}?

2. {x:Bool} and {y:Bool}?

3. {x:{a:Bool,b:Bool}} and
{x:{b:Bool,c:Bool}, y:Bool}?

4. {} and Bool?

5. {x:{}} and {x:Bool}?

6. Top→{x:Bool} and Top→{y:Bool}?

7. {x:Bool}→Top and {y:Bool}→Top?

Meets

To calculate joins of arrow types, we also need to be able to
calculate meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.
E.g., Bool→Bool and {} have no common subtypes, so they
certainly don’t have a greatest one!

However...

Existence of Meets

Theorem: For every pair of types S and T, if there is any type N

such that N <: S and N <: T, then there is a type M such that

1. M <: S

2. M <: T

3. If O is a type such that O <: S and O <: T, then O <: M.

I.e., M (when it exists) is the largest type that is a subtype of both
S and T.

Jargon: In the simply typed lambda calculus with subtyping,
records, and booleans...

I The subtype relation has joins

I The subtype relation has bounded meets

Examples

What are the meets of the following pairs of types?

1. {x:Bool,y:Bool} and {y:Bool,z:Bool}?

2. {x:Bool} and {y:Bool}?

3. {x:{a:Bool,b:Bool}} and
{x:{b:Bool,c:Bool}, y:Bool}?

4. {} and Bool?

5. {x:{}} and {x:Bool}?

6. Top→{x:Bool} and Top→{y:Bool}?

7. {x:Bool}→Top and {y:Bool}→Top?

Calculating Joins

S ∨ T =



Bool if S = T = Bool

M1→J2 if S = S1→S2 T = T1→T2
S1 ∧ T1 = M1 S2 ∨ T2 = J2

{jl:Jl
l∈1..q} if S = {kj:Sj

j∈1..m}

T = {li:Ti
i∈1..n}

{jl l∈1..q} = {kj j∈1..m} ∩ {li i∈1..n}
Sj ∨ Ti = Jl for each jl = kj = li

Top otherwise

Calculating Meets

S ∧ T =

S if T = Top

T if S = Top

Bool if S = T = Bool

J1→M2 if S = S1→S2 T = T1→T2
S1 ∨ T1 = J1 S2 ∧ T2 = M2

{ml:Ml
l∈1..q} if S = {kj:Sj

j∈1..m}

T = {li:Ti
i∈1..n}

{ml l∈1..q} = {kj j∈1..m} ∪ {li i∈1..n}
Sj ∧ Ti = Ml for each ml = kj = li
Ml = Sj if ml = kj occurs only in S

Ml = Ti if ml = li occurs only in T

f ail otherwise

Universal Types

Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)

doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)

doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once and parameterize it on
the details that vary from one instance to another.

Here, the details that vary are the types!

Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
λ-abstraction. So let’s just re-use the notation.

Abstraction:
double = λX. λf:X→X. λx:X. f (f x)

Application:
double [Nat]

double [Bool]

Computation:
double [Nat] −→ λf:Nat→Nat. λx:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T

would be more consistent.)

Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X

System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
λx:T.t abstraction
t t application
λX.t type abstraction
t [T] type application

v ::= values
λx:T.t abstraction value
λX.t type abstraction value

System F: new evaluation rules

t1 −→ t′1
t1 [T2] −→ t′1 [T2]

(E-TApp)

(λX.t12) [T2] −→ [X 7→ T2]t12 (E-TappTabs)

System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types
X type variable
T→T type of functions
∀X.T universal type

System F: Typing Rules

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Γ, X ` t2 : T2

Γ ` λX.t2 : ∀X.T2
(T-TAbs)

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12

(T-TApp)

History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very different at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.

Examples

Lists

cons : ∀X. X → List X → List X

head : ∀X. List X → X

tail : ∀X. List X → List X

nil : ∀X. List X

isnil : ∀X. List X → Bool

map =

λX. λY.
λf: X→Y.

(fix (λm: (List X) → (List Y).

λl: List X.

if isnil [X] l

then nil [Y]

else cons [Y] (f (head [X] l))

(m (tail [X] l))));

l = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));

head [Nat] (map [Nat] [Nat] (λx:Nat. succ x) l);

Church Booleans

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;

fls = λX. λt:X. λf:X. f;

not = λb:CBool. λX. λt:X. λf:X. b [X] f t;

Church Numerals

CNat = ∀X. (X→X) → X → X;

c0 = λX. λs:X→X. λz:X. z;

c1 = λX. λs:X→X. λz:X. s z;

c2 = λX. λs:X→X. λz:X. s (s z);

csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z);

cplus = λm:CNat. λn:CNat. m [CNat] csucc n;

Properties of System F

Preservation and Progress: unchanged.

(Proofs similar to what we’ve seen.)

Strong normalization: every well-typed program halts. (Proof is
challenging!)

Type reconstruction: undecidable (major open problem from 1972
until 1994, when Joe Wells solved it).

Parametricity

Observation: Polymorphic functions cannot do very much with
their arguments.

I The type ∀X. X→X→X has exactly two members (up to
observational equivalence).

I ∀X. X→X has one.

I etc.

The concept of parametricity gives rise to some useful “free
theorems...”

	Subtyping
	Properties of Subtyping
	Subtyping with Other Features
	Algorithmic Subtyping
	Developing an algorithmic subtyping relation
	Algorithmic Typing
	Meets and Joins
	Universal Types
	Examples

