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J. Zintl 1 CATEGORIES

1 Categories

1.1 Definitions and examples

Category theory aims to provide a meta language for mathematics. In many
cases, analogous constructions in different areas can be understood as in-
stances of the same universal concept.

For the purpose of this lecture it is enough to take a small glimpse into the
basics of this theory. Even though, we need to be careful about the formal
foundations. Throughout, we presume a given set theory.

1.1 Lemma: Russel’s Paradox. There exists no set S, which contains
all sets as elements.

Proof. Suppose that such a set S exists. Then by basic set theory we can
define the subset

S ′ := {S ∈ S : S 6∈ S}.

Again, by basic set theory, it must either hold S ′ ∈ S ′ or S ′ 6∈ S ′. In the
first case, when S ′ ∈ S ′ holds, the definition of S ′ implies S ′ 6∈ S ′, which
is a contradiction. In the same way, we see that the second case leads to a
contradiction. Therefore, our assumption on the existence of S cannot be
true. �

1.2 Remark. A popular, but obviously non-mathematical version of Rus-
sel’s paradox is the oxymoron: “The set of all sets is not a set ”.

As its formal set theoretical framework, general category theory uses the
concept of a fixed given universe U, in which there exists a class S of all sets
in U. See for example the discussion in [Mac, I.6] for details.

In this course, we will pretend1 that classes are (slight generalizations of)
sets, and we will talk about elements of classes, and maps between classes,
and so on.

1.3 Definition. A category C consists of the following data:

(1) a class of objects, which is denoted by Ob (C);
1In fact, there is a formal justification for doing this: to any given universe U and any

given class C in U, there exists a larger universe U′ containing U, such that C is a set in U′.
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J. Zintl 1 CATEGORIES

(2) a pairwise disjoint family of classes of morphisms, which are denoted
by Mor C(A,B), for pairs of objects A,B ∈ Ob (C);

(3) a family of composition maps

µA,B,C : Mor C(B,C)×Mor C(A,B)→ Mor C(A,C),

for triples of objects A,B,C ∈ Ob (C), satisfying for all quadruples of
objects A,B,C,D ∈ Ob (C) the associativity law

µA,B,D ◦ (µB,C,D × id Mor C(A,B)) = µA,C,D ◦ (id Mor C(C,D) × µA,B,C);

(4) a family of identity morphisms idB ∈ Mor C(B,B), for B ∈ Ob (C),
such that for all A,C ∈ Ob (C) and all morphisms f ∈ Mor C(A,B)
and all morphisms g ∈ Mor C(B,C) the equalities µA,B,B(idB, f) = f
and µB,B,C(g, idB) = g hold.

1.4 Notation. The set of all morphisms in C is denoted by

Mor (C) :=

•⋃
A,B∈Ob (C)

Mor C(A,B).

A morphism f ∈ Mor C(A,B) is written as an arrow

f : A→ B or A
f−→ B.

The object A is called the domain of f , and B its codomain. The composition
µA,B,C(g, f) ∈ Mor C(A,C) of f with some morphism g ∈ Mor C(B,C) is
denoted by g ◦ f : A→ C, and it is depicted as a composed arrow

A
f //

g◦f

77B
g // C

1.5 Remark: Commutative diagrams. A commutative triangle in a
category C is a triple (f, g, h), where f : A→ B, g : B → C and h : A→ C
are morphisms in C, such that h = g ◦ f . It is visualized by the picture

A
f //

h ��

B

g~~
C
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In this case, one says that the morphism h : A → C factors through B via
f and g.

The reader will have no difficulties in generalizing this idea to diagrams
involving more than three arrows. For example, the associativity law of
axiom (3) of definition 1.3 is equivalent to the requirement, that for all
morphisms f : A→ B, g : B → C, and h : C → D, the diagram

A
f //

g◦f
��

B

h◦g
��

C
h
// D

is a commutative square, that is, the equation (h ◦ g) ◦ f = h ◦ (g ◦ f) holds.

1.6 Example: The category (Set) of sets. The class of objects Ob (Set)
of this category consists of all sets2. For two given sets X and Y , we define
Mor (Set)(X,Y ) as the set (!) of all maps from X to Y . For three sets X, Y
and Z, and maps f : X → Y and g : Y → Z, we define µX,Y,Z(g, f) := g ◦ f
by the usual composition of maps, which is associative by construction.

Obviously, for any non-empty set X, there exists the identity morphism
idX : X → X, mapping each element of X to itself. For formal consistency,
for the empty set ∅ we need to define Mor (Set)(∅, ∅) := {�}. Here, {�}
denotes a set which contains exactly one element. This element then nec-
essarily equals id ∅. For any non-empty set X, the set Mor (Set)(∅, X) also
contains exactly one element, which can be interpreted as the inclusion map
∅ ⊂ X, while the set Mor (Set)(X, ∅) is empty.

1.7 Example. We define a category C as follows. The class of objects
Ob (C) is given by the set of all intervals I of the real line R. For two intervals
I, J ⊆ R, we define Mor C(I, J) := {f : I → R : f differentiable, and f(I) ⊆
J}. Note that it requires an (easy) proof to verify that the composition of
two differentiable functions is again differentiable, and hence a morphism in
C.
Consider the functions f1 : R≥0 → R≥0 and f2 : R≥0 → R, which are given
by f1(x) := f2(x) := x2 for x ∈ R≥0. By definition, they are two different
morphisms in C. This distinction makes sense. Indeed, they have different
properties: f1 is surjective, while f2 is not. Note that f1 is even bijective,
with set theoretic inverse map f−1

1 . However, f−1
1 is not differentiable, so

f1 has no inverse in C.
2More precisely, of all sets in our given universe U.
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1.8 Example: The category (Gp) of groups. The class of objects
Ob (Gp) is given by the class of all groups. For two groups G and H we
define Mor (Gp)(G,H) := Hom(G,H) by the set of all group homomorphisms
from G to H.

Clearly, for any group G, the identity map idG is a group homomorphism,
and therefore contained in Mor (Gp)(G,G). The composition of two (com-
posable) group homomorphisms is again a group homomorphism, and the
composition of three group homomorphisms is associative, satisfying the
axioms 1.3(3) and (4).

1.9 Remark. Analogously to the example 1.8, other categories are defined
in the obvious way:

(Fld) fields and field homomorphisms;
(Rng) rings and ring homomorphisms;

(CRng) commutative rings and their homomorphisms;
(Top) topological spaces and continuous maps;
(Mfd) differentiable manifolds and differentiable maps;

...

1.10 Definition. Let C be a category. A subcategory of C is a category B,
such that Ob (B) ⊆ Ob (C), and for all pairs of objects A,B ∈ Ob (B) holds
Mor B(A,B) ⊆ Mor C(A,B). It is called a full subcategory, if for all pairs of
objects A,B ∈ Ob (B) holds the equality Mor B(A,B) = Mor C(A,B).

1.11 Example: The category (Ab) of Abelian groups. By taking all
Abelian groups as objects, together with all of their group homomorphisms
as morphisms, we obtain a full subcategory of the category (Gp) of groups.

1.12 Example: The category (K-VS) of vector spaces. Let K be
a given field. The category (K-VS) of vector spaces over K consists of all
K-vector spaces, together with K-linear maps as morphisms.

We obtain the full subcategory (K-VSfinite) of finite dimensional vector
spaces if we define Ob (K-VSfinite) as the class of only those K-vector
spaces, which are of finite dimension over K. For two finite dimensional K-
vector spaces V andW , we put Mor (K−VSfinite)(V,W ) := Mor (K−VS)(V,W ).

Note that in general (K-VS) is not a subcategory of the category (Gp) of
groups. Even though every vector space is a group by definition, there may
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be more3 than one way in which a given group carries the structure of a
vector space. Therefore, by “forgetting” the extra structure on the vector
spaces, we get a map Ob (K-VS) → Ob (Gp), but in general this is not an
inclusion. Compare also example 2.4 below.

1.13 Example. Let S be a set. We want to show that S can be interpreted
as a category S. To do this, we define Ob (S) := S. For any element s ∈ S
we define Mor S(s, s) as a set containing exactly one element, which shall be
denoted by id s. For any two elements s, t ∈ S we define

Mor S(s, t) :=

{
∅, if s 6= t,
{id s}, if s = t.

The composition of morphisms in S shall be defined in the obvious way.

Via this construction, any set can be interpreted as a category! This is
a special instance of a general idea: very often category theory not only
describes structures of a theory (set theory in this case) from the outside,
but also incorporates and generalizes the theory itself.

1.14 Example. Let G be a given group, with composition g ∗ h ∈ G
for a pair of elements g, h ∈ G. We define a category G as follows. Let
Ob (G) := {�} be a set containing exactly one element. As morphisms, we
define Mor G(�,�) := G, and the composition of morphisms be given by the
composition in G. Since the composition in G is associative, axiom (3) of
definition 1.3 is satisfied. For axiom (4), we define id� := 1G by the identity
element of G. In this way, any group can be interpreted as a category with
certain special properties.

1.15 Example: Orders. A category C is called an order, if for any pair
of objects a, b ∈ Ob (C) the union

Mor C(a, b) ∪Mor C(b, a) = {�}

consists of exactly one element. Let a 6= b. Since the union is disjoint by
definition, we must either have Mor C(a, b) = {�} and Mor C(b, a) = ∅, or
vice versa. In the first case, we denote the unique element by (a ≤ b) ∈
Mor C(a, b).

3For example, the additive group R× R can viewed in (at least) two different ways as
a vector space over C.
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For three objects a, b, c ∈ Ob (C) and morphisms (a ≤ b) and (b ≤ c), the
composition axiom 1.3(3) becomes the transitivity law

(b ≤ c) ◦ (a ≤ b) = (a ≤ c).

Suppose that both morphisms (a ≤ b) and (b ≤ a) exist. Since Mor C(a, b)∪
Mor C(b, a) contains only one element, it must hold (a ≤ b) = (b ≤ a), which
is true if and only if a = b.

For any set Z, which is ordered by an order relation “≤”, we can define an
order Z by putting Ob (Z) := Z, and

MorZ(x, y) :=

{
∅, if x 6≤ y,
{�}, if x ≤ y.

Since the sets of morphisms in Z need to be pairwise disjoint, we use the
notation (!) (x ≤ y) for the unique element in MorZ(x, y) if x ≤ y.

1.16 Remark. The above examples show that the notion of a “morphism”
in a category is very versatile, and it includes much more than only maps
and functions!

1.2 Monomorphisms, epimorphisms, and isomorphisms

1.17 Definition. Let C be a category, and let B,C ∈ Ob (C) be objects.
(i) A morphism g : B → C is called a monomorphism, if for all pairs of
morphisms f, f ′ : A→ B the equality g ◦ f = g ◦ f ′ implies f = f ′.
(ii) A morphism g : B → C is called an epimorphism, if for all pairs of
morphisms h, h′ : C → D the equality h ◦ g = h′ ◦ g implies h = h′.
(iii) A morphism g : B → C is called an isomorphism, if there exists a
morphism f : C → B, such that f ◦ g = idB and g ◦ f = id C .

1.18 Definition. Two objects B and C of a category C are called isomor-
phic, if there exists an isomorphism g : B → C. We then write B ∼= C.

1.19 Remark. a) In other words, a morphism is a monomophism, if and
only if it can be canceled on the left, and an epimorphism, if and only if it
can be canceled on the right.
b) It is easy to see that “being isomorphic” constitutes an equivalence rela-
tion on Ob (C).

8



J. Zintl 1 CATEGORIES

1.20 Exercise. Let f : A→ B and g : B → C be morphisms in a category
C. Prove the following implications:

(i) g ◦ f is a monomorphism ⇒ f is a monomorphism,
(ii) g ◦ f is an epimorphism ⇒ g is an epimorphism,
(iii) g is an isomorphism ⇒ g is a mono- and an epimorphism.

1.21 Proposition. For all morphisms g ∈ Mor (Set) in the category of
sets the following equivalences hold:

(i) g is a monomorphism ⇔ g is injective,
(ii) g is an epimorphism ⇔ g is surjective,
(ii) g is an isomorphism ⇔ g is bijective.

Proof. We will prove the first equivalence only, and leave the second one
as an exercise to the reader. Equivalence (iii) is the well-known result, that
a map is bijective if and only if it has a set theoretic inverse.

Suppose at first, that g : Y → Z is a monomorphism in (Set). Let x, y ∈ Y
such that f(x) = f(y). Consider the set X := {x, y}. Let i : X → Y
denote the inclusion map, and let f : X → Y denote the constant map with
f(x) := x and f(y) := x. Then clearly g ◦ f = g ◦ i. By the definition of a
monomorphism, this implies f = i, and hence x = y. This establishes the
injectivity of g.

Conversely, suppose that g : Y → Z is injective. Let f, f ′ : X → Y be
morphisms in (Set), such that g◦f = g◦f ′. By definition of the composition,
for all x ∈ X holds g(f(x)) = g(f ′(x)). The injectivity of f implies for all
x ∈ X the equality f(x) = f ′(x), and thus f = f ′. �

1.22 Remark. In general, the equivalences of proposition 1.21 are mis-
leading. First of all, there are categories, where the words “injective” and
“surjective” have no meaningful definition. But even if these notions can be
defined, they may not correlate to monomorphisms and epimorphisms, as
example 1.23 below shows.

Recall also example 1.7, where we found a morphism, which was both in-
jective and surjective, but not an isomorphism in the given category. In
particular, a morphism, which is both a monomorphism and an epimor-
phism, needs not be an isomorphism.

9
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1.23 Example. Let X be a set. The power set of X is defined as the set
of all subsets of X, i.e. P(X) := {Y : Y ⊆ X}. We define a category X by
Ob (X ) := P(X), and

Mor X (U, V ) :=

{
{iU,V : U ↪→ V inclusion map}, if U ⊆ V

∅, if U 6⊆ V.

Clearly there exists an identity morphism id U := iU,U ∈ Mor X (U,U), as well
as an associative composition iV,W ◦ iU,V := iU,W for U ⊆ V and V ⊆W .

Since there is at most one morphism from any given object U to another
object V in X , the cancellation rules from remark 1.19 hold trivially. In par-
ticular, any morphism in X is both a monomorphism and an epimorphism.

On the other hand, suppose that iU,V is an isomorphism in X . Then there
exists a second morphism iV,W satisfying the identity iV,W ◦ iU,V = id U . By
definition, iV,W ◦ iU,V = iU,W , so we must have U = W . Since U ⊆ V ⊆W ,
this implies U = V . Therefore, the isomorphisms in X are exactly the
identity morphisms id U .

The situation looks more familiar, if all morphisms in the category consid-
ered are group homomorphisms.

1.24 Proposition. Let (Gp) be the category of groups. Then for all mor-
phisms g ∈ Mor (Gp) the following equivalences hold:

(i) g is a monomorphism ⇔ g is injective,
(ii) g is an epimorphism ⇔ g is surjective,
(iii) g is an isomorphism ⇔ g is a mono- and an epimorphism.

Proof. The third equivalence follows from the first two. Indeed, if g :
G → H is both a monomorphism and an epimorphism of groups, then it
is bijective by (i) and (ii). Hence there exists a set-theoretic inverse map
g−1 : B → A. An easy standard argument in group theory shows that g−1 is
again a group homomorphism, and hence a morphism in (Gp). Conversely,
if g is an isomorphism, then it is a monomorphism and an epimorphism by
exercise 1.20(iii).

We will now prove the first equivalence only, and leave the second one as an
exercise to the reader.

10
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To show the implication “⇒”, let g : G→ H be a monomorphism in (Gp).
Put K := ker(g) ∈ Ob (Gp), and consider the group homomorphisms

f : K → G
a 7→ a

and
f ′ : K → G

a 7→ 0G

which are the inclusion homomorphism f of K into G, and the constant
morphism f ′ mapping K to the identity element 0G ∈ G. For all elements
a ∈ K, we compute

g ◦ f(a) = g(a) = 0H and g ◦ f ′(a) = g(0G) = 0H .

Thus g ◦ f = g ◦ f ′, and since g is assumed to be a monomorphism, we
conclude f = f ′. This implies ker(g) = {0G}, and hence g is injective.

Conversely for the implication “⇐”, let g : G→ H be an injective morphism.
Let f, f ′ : A → G be group homomorphisms with g ◦ f = g ◦ f ′. Thus for
all a ∈ A holds g ◦ f(a) = g ◦ f ′(a), and then f(a) = f ′(a) by the injectivity
of g. Hence f = f ′. �

1.25 Exercise. Prove that the equivalences of proposition 1.24 hold in
the category Ob (K-VS), for any field K, too.

The above exercise 1.25 explains, why in the theory of vector spaces, we
learned to use the words monomorphism and injective map as synonyms, as
well as epimorphism and surjective map. Compare also lemma 2.10 below.

1.3 Products and coproducts

1.26 Definition. Let C be a category. Let a : A → C and b : B → C be
morphisms in C. A product of a and b is a triple (P, pa, pb), where P ∈ Ob (C)
is an object, and pa : P → A and pb : P → B are morphisms in C, such
that a ◦ pa = b ◦ pb, and which satisfies the following universal property of
products:

For any triple (D, f, g), with Z ∈ Ob (C), and f : D → A and g : D → B
such that a◦ f = b◦ g, there exists a unique morphism d : D → P in C, such
that the following diagram commutes:

D
g

''
f

��

d
  
P pb

//

pa
��

B

b
��

A a
// C

11
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1.27 Remark. Note the conceptual twist of the above definition 1.26.
A product is not defined directly by writing down concrete objects and
morphisms, but indirectly by postulating certain properties.

This approach has its obvious charm: What we obtain is tailor-made with
exactly the properties we desire. On the downside, it is by no means clear,
that what we defined really exists. And even, if it exists, how well-described
is it by the postulated properties? If the postulates are too generic, our
definition will be of little use.

Here a second subtlety of the definition comes into play: the idea of a
universal property. We require that all triples (D, f, g) in the category C,
which have the same basic property a◦f = b◦g, are related to the “universal
triple” in a unique (!) way. This determines the product (almost) uniquely,
as we see in the following proposition 1.28

1.28 Proposition. Let C be a category, and let a : A→ C and b : B → C
be morphisms in C. Let (P, pa, pb) and (P ′, p′a, p

′
b) be products of a and b.

Then there exists an isomorphism p : P → P ′ such that pa = p′a ◦ p and
pb = p′b ◦ p, and this isomorphism is unique.

Proof. Since (P, pa, pb) is a product of a and b, we have a◦pa = b◦pb. Since
(P ′, p′a, p

′
b) is also a product, the universal property of (P ′, p′a, p

′
b) applied to

the triple (P, pa, pb) implies the existence of a unique morphism p : P → P ′,
such that the diagram

P
pb

''
pa

��

p
  
P ′

p′b

//

p′a
��

B

b
��

A a
// C

commutes. We claim that this morphism p is in fact an isomorphism.

To see this, we use in an analogous way as before the universal property
of (P, pa, pb) applied to the triple (P ′, p′a, p

′
b). This implies the existence of

a unique morphism p′ : P ′ → P , such that p′a = pa ◦ p′ and p′b = pb ◦ p′.

12
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Therefore the composed diagram

P ′

p′b

%%
p′a

��

p′

  
P

pb

''
pa

��

p
  
P ′

p′b

//

p′a
��

B

b
��

A a
// C

commutes. In particular, we have two commutative diagrams

P ′

p′b

''
p′a

��

p◦p′
  

P ′

p′b

''
p′a

��

id P ′
  

P ′
p′b

//

p′a
��

B

b
��

and P ′
p′b

//

p′a
��

B

b
��

A a
// C A a

// C

where the second one commutes trivially. Finally, by applying the universal
property of (P ′, p′a, p

′
b) to (P ′, p′a, p

′
b) itself, we obtain the existence of a

unique (!) morphism π : P ′ → P ′ making the above diagrams commute.
Therefore we must have p ◦ p′ = π = id P ′ .

Analogously, we prove the identity p′ ◦p = id P . This shows that p : P → P ′

is an isomorphism, and that it is the unique morphism which satisfies the
property pa = p′a ◦ p and pb = p′b ◦ p. �

1.29 Notation. It is established practice, presuming the Axiom of Choice,
to fix for any pair of morphisms a : A→ C and b : B → C in a category C,
for which a product of a and b exists, one product, which is then denoted
by (A×a,C,b B, pa, pb). Often, one just writes A×C B, and calls it the fibre
product of A and B over C.

1.30 Example: Cartesian product. Consider the category (Set) of sets.
As before, let {�} denote a one-elemented set. Let A and B be sets, together
with the unique constant maps a : A→ {�} and b : B → {�}.

13
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We claim that up to bijections the product of a and b is given by the Carte-
sian product A×B, together with the projection maps p1 : A×B → A and
p2 : A×B → B. Obviously, we have a ◦ p1 = b ◦ p2. Suppose we are given a
set X, together with a pair of maps f : X → A and g : X → B. (Note that
for the composed maps a ◦ f : X → {�} and b ◦ g : X → {�} the equality
a ◦ f = b ◦ f is trivially satisfied.) We define a map h : X → A × B by
h(x) := (f(x), g(x)) for x ∈ X. Consider the diagram

X
g

))
f

��

(f,g)
##
A×B p2

//

p1

��

B

b
��

A a
// {�}

It is clear that this map satisfies p1 ◦ h = f and p2 ◦ h = g, and it is the
unique map with this property.

1.31 Remark. Analogously to example 1.30, other well-known construc-
tions can be identified as products, for example:

• G×H, the product group for groups G,H ∈ Ob (Gp);

• V ⊕W , the direct sum for K-vector spaces V,W ∈ Ob (K-VS);

• A∩B, the intersection of subsets A,B ⊆ S of some given S ∈ Ob (Set).

1.32 Example: Preimages and fibres. Consider again the category
(Set) of sets. Let f : X → Y be a map, and let U ⊆ Y be a subset.

We claim that for the set-theoretic preimage of U there exists a bijection

f−1(U) ∼= U ×i,Y,f X,

where i : U → Y is the inclusion map. More explicitly, if j : f−1(U)→ X de-
notes the inclusion map, then we claim that the triple (f−1(U), f |f−1(U), j)
is a product of i and f .

We clearly have i ◦ f |f−1(U) = f ◦ j. Suppose that we are given a set S,
together with maps h : S → U and g : S → X, such that i ◦ h = f ◦ g.

14
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Then for all s ∈ S, we have f(g(s)) = (f ◦ g)(s) = (i ◦ h)(s) = h(s) ∈ U . In
particular, for all s ∈ S holds g(s) ∈ f−1(U). Therefore, the map

g′ : S → f−1(U) with g′(s) := g(s)

is well-defined, and it satisfies both equalities j◦g′ = g and f |f−1(U)◦g′ = h.
The commutative diagram looks like this:

S
g

))
h

��

g′

##
f−1(U)

j
//

f |f−1(U)
��

X

f

��
U

i
// Y

The map g′ is the unique map satisfying the above two equalities. Indeed,
suppose that there is another such map γ : S → f−1(U). Then the map γ
satisfies in particular j ◦ γ = g = j ◦ g′. The inclusion map j is injective, so
it is a monomorphism by proposition 1.21. Thus γ = g′.

A fibre over a point y ∈ Y is by definition the preimage of the subset {y} ⊆ Y
with respect to f . From this, the name “fibred product” is derived.

Note that this construction can be used to define preimages of morphisms
even in a category C, where no set-theoretic preimages exists, provided that
products always exist in that category.

1.33 Definition. Let C be a category. Let a : C → A and b : C → B
be morphisms in C. A coproduct of a and b is a triple (Q, qa, qb), where
Q ∈ Ob (C) is an object, and qa : A → Q and qb : B → Q are morphisms
in C, such that qa ◦ a = qb ◦ b, and which satisfies the following universal
property of coproducts:

For any triple (Z, f, g), with Z ∈ Ob (C), and f : A → Z and g : B → Z
such that f ◦ a = g ◦ b, there exists a unique morphism z : Q→ Z in C, such
that the following diagram commutes:

C
b //

a
��

B

qb
��

g

��

A
qa //

f
''

Q

z

��
Z

15



J. Zintl 1 CATEGORIES

1.34 Exercise. Show that coproducts are unique up to a unique isomor-
phism. Compare the proof of proposition 1.28.

1.35 Example: Disjoint union. Consider the category (Set) of sets. Let
A and B be sets, together with the unique inclusion maps a : ∅ → A and
b : ∅ → B .

We claim that up to bijections the coproduct of a and b is given by the
disjoint union A∪̇B, together with the inclusion maps i : A → A∪̇B and
j : B → A∪̇B. The identity i◦a = j ◦ b is trivial. Suppose that we are given
a set X, together with a pair of maps f : A → X and g : B → X. (Again,
the condition f ◦ a = g ◦ b is empty.) We define a map

h : A∪̇B → X by h(x) :=

{
f(x), if x ∈ A,
g(x), if x ∈ B.

Consider the diagram

∅ b //

a
��

B

j
��

g

��

A
i //

f
((

A∪̇B

h
""
X

It is clear that this map satisfies h ◦ i = f and h ◦ j = g, and it is the unique
map with this property.

1.36 Exercise. Show that in the category of vector spaces over a given
field K the direct sum V ⊕W of V,W ∈ Ob (K-VS) is a coproduct.

1.37 Example: Quotients. Consider the category of sets, and let a set
X ∈ Ob (Set) be fixed. Recall that an equivalence relation on X is a subset
R ⊆ X ×X, such that for all elements x, y, z ∈ X the following hold

(i) (x, x) ∈ R,
(ii) (x, y) ∈ R ⇒ (y, x) ∈ R,
(iii) (x, y) ∈ R, (y, z) ∈ R ⇒ (x, z) ∈ R.

Two elements x, y ∈ X are called equivalent, if (x, y) ∈ R. The equivalence
class of an element x ∈ X with respect to R is the set [x] := {y ∈ R : (x, y) ∈

16



J. Zintl 1 CATEGORIES

R}. The set of all equivalence classes is denoted by X/R := {[x] : x ∈ R}
and called the quotient of X modulo R. There is a canonical surjective
quotient map π : X → X/R given by π(x) := [x].

Let p1 : R → X and p2 : R → X denote the projections onto the first and
second coordinate, respectively. We claim that (X/R, π, π) is a coproduct
of p1 and p2.

Let (x, y) ∈ R. Then π ◦ p1(x, y) = [x] and π ◦ p2(x, y) = [y]. But [x] = [y]
by definition, since (x, y) ∈ R. This shows the identity π ◦ p1 = π ◦ p2. To
prove the universal property, consider a set Z, together with a pair of maps
f : X → Z and g : X → Z such that f ◦ p1 = g ◦ p2. Thus, for all (x, y) ∈ R
holds f(x) = g(y). In particular, since for all x ∈ X holds (x, x) ∈ R, we
find f(x) = g(x), and hence f = g. We now define a map

f : X/R→ Z by f([x]) := f(x).

First, we need to verify that this is well defined. Let x′ ∈ X be another
representative with [x′] = [x]. Then (x′, x) ∈ R. We compute f(x′) =
f◦p1(x′, x) = g◦p2(x′, x) = g(x) = f(x), by the previous observation. Hence
the definition of the map f is independent of the chosen representative.

It satisfies the identity f ◦ π = f by definition, and hence also f ◦ π = g,
since f = g. It is the unique map with this property. Indeed, suppose there
exists another map z : X/R → Z such that z ◦ π = f . Then z ◦ π = f ◦ π.
Since π is an epimorphism by proposition 1.21, we conclude z = f .

The corresponding diagram looks like this:

R
p2 //

p1
��

X

π
��

g=f

��

X
π //

f
((

X/R

f
""
Z.

1.38 Remark. In fact, what we discussed in example 1.37, is the universal
property of the quotient: For any map f : X → Z, which satisfies f(x) = f(y)
for any equivalent x, y ∈ X, there exists a unique map f : X/R → Z such
that f = z ◦ π.

1.39 Definition. Let C be a category. Let C ∈ Ob (C), and let I be
a set. Let AI := {ai : Ai → C}i∈I be a family of morphisms in C. A

17
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product of AI is an object P ∈ Ob (C) together with a family of morphisms
{pi : P → Ai}i∈I , such that ai ◦ pi = aj ◦ pj holds for all pairs i, j ∈ I, and
which satisfies the following universal property of products:

For any family {fi : D → Ai}i∈I , such that fi ◦ pi = fj ◦ pj or all pairs
i, j ∈ I, there exists a unique morphism f : D → P in C, such that the
following diagram commutes for all i, j ∈ I:

D
fj

''
fi

��

f

  
P pj

//

pi

��

Aj

aj

��
Ai ai

// C

1.40 Remark. a) The diagram in definition 1.39 is drawn in analogy to
the case of families consisting of two morphisms as in definition 1.26. For
the universal property of arbitrary products it suffices to require the identity
fi = pi ◦ f for all i ∈ I.

b) The definition of a coproduct of a family AI := {ai : C → Ai}i∈I of mor-
phisms generalizing definition 1.33 is completely analogous. Furthermore,
the uniqueness statements for products and coproducts, as in proposition
1.28, carry over in a straightforward way.

c) In talking about products and coproducts, very often the morphisms
involved are left unmentioned (but not forgotten!). The established notation
is ∏

i∈I
Ai for a product, and

∐
i∈I

Ai for a coproduct.

1.41 Example. Let K be a field, and (K-VS) be the category of vector
spaces over K. For a family of vector spaces {Vi}i∈I , the Cartesian product∏

i∈I
Vi :=

{
{vi}i∈I : vi ∈ Vi

}
has in a natural way the structure of a K-vector space. By definition, the
direct sum of the family is the K-subspace⊕

i∈I
Vi :=

{
{vi}i∈I : vi ∈ V and {i ∈ I : vi 6= 0} is finite

}
.

18
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Obviously both constructions agree for finite sets of indices I.

Let O := {0} denote the trivial vector space. We can identify the family
{Vi}i∈I as well with a family of constant K-linear maps {Vi → O}i∈I , as with
a family of trivial inclusion homomorphisms {O → Vi}i∈I . It is straightfor-
ward to verify that with respect to these families,

∏
i∈I Vi is a product, and⊕

i∈I Vi is a coproduct.

To get an idea, why product and coproduct behave differently, consider two
families of K-linear maps {fi : U → Vi}i∈I , and {gi : Vi → W}i∈I , and the
corresponding diagrams of the universal properties:

U
fj

))
fi

��

f

""

O //

��

Vj

ej

��
gj

��

∏
i∈I Vi pj

//

pi

��

Vj

��

and Vi
ei //

gi
))

⊕
i∈I Vi

g

##
Vi // O W

Here, pi and ei, for i ∈ I, denote the obvious projection and embedding
homomorphisms.

In the case of the product, we need to verify for each vector u ∈ U the
condition fi(u) = pi ◦ f(u) for all i ∈ I simultaneously. In the case of the
coproduct, we need to verify for each single i ∈ I that for any vector v ∈ Vi
the condition gi(v) = g ◦ ei(v) is satisfied.

In a certain sense, the product
∏
i∈I Vi is the largest vector space, making the

diagram of definition 1.39 commutative, while the coproduct
⊕

i∈I Vi is the
smallest vector space, that makes the corresponding diagram commutative.
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2 Functors

2.1 Definitions and examples

2.1 Definition. Let B and C be categories. A functor F from B to C
consists of the following data:

(1) a map of classes
F : Ob (B)→ Ob (C)

(2) a family of maps of classes

FA,B : Mor B(A,B)→ Mor C(F (A), F (B))

for all A,B ∈ Ob (B), such that

(3) for all A ∈ Ob (B) holds

FA,A(idA) = id F (A)

(4) for all A,B,C ∈ Ob (B), f ∈ Mor B(A,B) and g ∈ Mor B(B,C) holds

FA,C(g ◦ f) = FB,C(g) ◦ FA,B(f)

2.2 Remark. Note that in part (4) of definition 2.1, the symbol “◦” stands
on the left hand side of the equation for the composition in B, while on the
right hand side it stands for the composition in C.
Our notation for a functor F from a category B to a category C will be

F : B → C
B 7→ F (B)

f : B → B′ 7→ FB,B′(f) : F (B)→ F (B′)

where B and B′ are objects in B, and f : B → B′ is a morphism in B. Often
we will simply write F (f) instead of FB,B′(f) for the image of a morphism
f ∈ Mor B(B,B′).

2.3 Example. Let n ∈ N>0 be fixed. For any field (K,+, ·), we have the
multiplicative group of invertible square matrices (Gln(K), ·) of size n. In
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fact, this assignment is functorial in the following sense: We define a functor
by

Gln : (Fld) → (Gp)

(K,+, ·) 7→ (Gln(K), ·)
α 7→ α̃

For a homomorphism of fields α : K → L we define the morphism α̃ :=
Gln(α) as follows. Consider an invertible matrix A = (aij)1≤i,j≤n ∈ Gln(K).
For any aij ∈ K, we obtain α(aij) ∈ L, and thus a quadratic matrix
α̃(A) ∈ Mat(n, n, L). Recall that the determinant map is a polynomial
in the coefficients of the matrix, and α is a homomorphism of fields. So we
compute

det ((α(aij))1≤i,j≤n) = α(det ((aij)1≤i,j≤n)) 6= 0.

The last inequality follows, since det(A) 6= 0 by assumption, and α is in-
jective as a homomorphism of fields. In particular, α̃(A) ∈ Gln(L), so α̃ is
indeed a map from Gln(K) to Gln(L).

To verify that α̃ is in fact a morphism in (Gp), we still need to prove that
it is a group homomorphism. Indeed, for A,B ∈ Gln(K), an elementary
computation shows α̃(AB) = α̃(A) · α̃(B).

It is easy to verify for a second homomorphism of fields β : L → M the
functorial property (β ◦ α)∼ = β̃ ◦ α̃ for compositions.

2.4 Example: Forgetful Functors. As the name suggests, these func-
tors “forget” certain structures on objects, reducing them to objects in a
more elementary category.

For example, any field (K,+, ·) carries as part of its definition the structure
of an Abelian group (K,+). Any homomorphism of fields is in particular a
homomorphism of the underlying Abelian groups. We thus have as a special
case of a forgetful functor:

F : (Fld) → (Ab)

(K,+, ·) 7→ (K,+)

α 7→ α

2.5 Definition. Let F : B → C be a functor. The functor F is called full,
if for all A,B ∈ Ob (B) the map FA,B is surjective. The functor F is called
faithful, if for all A,B ∈ Ob (B) the map FA,B is injective.
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2.6 Example. Let B be a subcategory of C. Then the in the obvious
way defined inclusion functor i : B → C is faithful. Moreover, B is a full
subcategory if and only if i is full.

2.7 Exercise. Let F : B → C be a functor, and let f ∈ Mor (B).

a) Show that F (f) is an isomorphism, if f is an isomorphism.

b) Suppose that F is full and faithful. Show that F (f) is an isomorphism
if and only if f is an isomorphism.

2.8 Definition. A faithful category over (Set) is a pair (C,F) consisting of
a category C and a faithful functor F : C → (Set). In this case, a morphism
f ∈ Mor (C) is called injective, if F (f) is injective in (Set), and surjective, if
F (f) is surjective in (Set).

2.9 Example. Using the respective forgetful functors, all of the categories
(Gp), (Ab), (Rng), (CRng), (Fld), (K-VS) are faithful over (Set). With
respect to the forgetful functors, the notions of injectivity and surjectivity
of definition 2.8 agree with the standard definitions.

2.10 Lemma. Let (C,F) be a faithful category over (Set). Let f ∈ Mor (C)
be a morphism. If f is injective, then it is a monomorphism. If f is surjec-
tive, then it is an epimorphism.

Proof. We prove only the first claim, and leave the second one to the reader
as an exercise.

Suppose that g : B → C is an injective morphism in C. Then, by definition,
F (g) is injective in (Set), so it is a monomorphism by proposition 1.21.
Consider two morphisms f, f ′ : A → B in C such that g ◦ f = g ◦ f ′.
Applying the functor F, we obtain F (g) ◦ F (f) = F (g) ◦ F (f ′). Hence
F (f) = F (f ′), and thus f = f ′, since F is faithful. �

2.11 Remark: Category (Cat) of categories. By now, we have be-
come familiar with a fundamental trait of mathematics: in a first step, one
introduces interesting new “objects”, and in a second step one studies their
interrelations, which are formulated as “morphisms”.

It is only natural to apply this strategy to the definition of categories itself,
viewing them as objects in a category, where the morphisms are given by
functors.
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Let A,B, C be categories. Let F : A → B and G : B → C be functors
between them, given by families of maps F and FA1,A2 , or G and GB1,B2 ,
respectively, where A1, A2 ∈ Ob (A) and B1, B2 ∈ Ob (B). There is a natural
composition of functors G ◦ F, which is given by G ◦ F for objects, and
GF (A1),F (A2) ◦ FA1,A2 , for morphisms, with A1, A2 ∈ Ob (A). This rule for
composition is associative, and clearly there is an identity functor for each
category.

In this way, we construct the category of categories (Cat), where the class
of objects consists of all categories, and the respective class of morphisms
Mor (Cat)(A,B) consists of all functors from A to B.

2.2 Duality

The concept of duality is a deeply embedded into the framework of mathe-
matical language.

2.12 Definition. Let C be a category. The opposite category Cop is defined
by

(1) the class of objects
Ob (Cop) := Ob (C),

(2) the classes of morphisms, for all A,B ∈ Ob (C)

Mor Cop(A,B) := Mor C(B,A)

(i.e. a morphism fo : A→ B in Cop is a morphism f : B → A in C),

(3) the composition maps, for all A,B,C ∈ Ob (Cop)

µopA,B,C(go, fo) := µC,B,A(f, g)o

where fo ∈ Mor Cop(A,B), and go ∈ Mor Cop(B,C),

(4) identity morphisms, for all A ∈ Ob (Cop)

id o
A := idA.

2.13 Remark. In shorthand notation, the composition rule for morphisms
fo : A→ B and go : B → C in Cop is written as

go ◦ fo = (f ◦ g)o
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where we need to keep in mind that the composition “◦” on the left hand
side is meant to be taken in Cop, and on the right hand side in C.
Using diagrams, the composition rule for the opposite category is visualized
as follows: A diagram in the category Cop

A
fo //

go◦fo
77B

go // C

corresponds in C to a diagram

A B
foo C

goo

f◦g

gg

Clearly, we have (Cop)op = C. Therefore, for a morphism f ∈ Mor (Cop) we
can also write fo ∈ Mor (C) for the corresponding morphism in C.
In practice, the superscript “ o ” is usually omitted, when the direction of
the morphisms is clear from the context.

2.14 Proposition. Let C be a category. Let f : A→ C and g : B → C be
morphisms in C. Then the following equivalences hold:

(i) f is a monomorphism in C ⇔ fo is an epimorphism in Cop,

(ii)
(P, pa, pb) is a product

of f and g in C ⇔ (P, poa, p
o
b) is a coproduct

of fo and go in Cop.

Proof. The proof follows immediately from the definitions. �

2.15 Remark. Let C be a category, and let Cop be its opposite category.
The duality on C is defined by the assignment

D : B → Bop

A 7→ A

f : A→ B 7→ fo : B → A

The duality D is not a functor. Indeed, for two morphisms f : A→ B and
g : B → C we compute from the composition rule of the opposite category

DA,C(g ◦ f) = (g ◦ f)o = fo ◦ go = DA,B(f) ◦DB,C(g).
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2.16 Definition. Let B and C be categories. A contravariant functor
from B to C is a functor

F : Bop → C.

2.17 Remark. a) For emphasis, a functor F : B → C as in definition 2.1
is also called a covariant functor.

b) Let a contravariant functor F : Bop → C be given. By composition with
the duality on B from 2.15, it can be viewed as an assignment Fop := F ◦D
with

Fop : B → C
A 7→ F (A)

f : A→ B 7→ FB,A(fo) : F (B)→ F (A).

Recall that a morphism f : A → B in B is sent under the duality to the
morphism fo : B → A in Bop. Therefore we have F opA,B(f) = FB,A(fo) ∈
Mor C(F (B), F (A)).

For a second morphism g : B → C in B, the composition g ◦ f : A → C
corresponds to a morphism (g ◦ f)o : C → A in Bop. The composition rule
for the covariant functor on Bop implies

FC,A((g ◦ f)o) = FC,A(fo ◦ go) = FB,A(fo) ◦ FC,B(go),

and hence,
F opA,C(g ◦ f) = F opA,B(f) ◦ F opB,C(g).

Summing things up: covariant functors preserve orientations and composi-
tions, while covariant functors reverse both. In everyday mathematics, one
simply writes F : B → C instead of Fop : Bop → C when the orientations of
the arrows are clear from the context.

2.18 Example: The Mor-Functors.

Let C be a category, such that for all A,B ∈ Ob (C) the class Mor C(A,B) is
a set. Let an object A ∈ Ob (C) be fixed.

a) We define the covariant Mor -functor by

Mor (A, •) : C → (Set)

B 7→ Mor C(A,B)

α : B → B′ 7→ α∗ : Mor C(A,B)→ Mor C(A,B
′)
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where we define for a morphism α : B → B′ and f ∈ Mor C(A,B) the
image α∗(f) := α ◦ f ∈ Mor C(A,B

′). Note that for a second morphism
β : B′ → B′′ we clearly have

(β ◦ α)∗(f) = β ◦ α ◦ f = β∗(α ◦ f) = β∗(α∗(f)) = β∗ ◦ α∗(f).

Hence (β ◦ α)∗ = β∗ ◦ α∗, so Mor (A, •) is indeed a functor.

b) We define the contravariant Mor -functor by

Mor (•, A) : C → (Set)

B 7→ Mor C(B,A)

α : B → B′ 7→ α∗ : Mor C(B
′, A)→ Mor C(B,A)

where we define for a morphism α : B → B′ in C and f ∈ Mor C(B
′, A) the

image α∗(f) := f ◦ α ∈ Mor C(B,A). In this case, for a second morphism
β : B′ → B′′ in C we find

(β ◦ α)∗(f) = f ◦ β ◦ α = α∗(f ◦ β) = α∗(β∗(f)) = α∗ ◦ β∗(f).

Hence (β ◦ α)∗ = α∗ ◦ β∗, so Mor (•, A) is contravariant.

2.19 Exercise. Let C = (Gp) be the category of groups. For all groups
G,H ∈ Ob (Gp), the set of morphisms Mor (Gp)(G,H) = Hom(G,H) has
in a natural way the structure of a group. Construct analogously to the
previous example 2.18 covariant and contravariant Hom-functors from (Gp)
to (Gp) itself.

2.20 Example. Let K be a field, and consider the category (K-VS) of
K-vector spaces. Consider K as a vector space over itself. Then the con-
travariant Mor -functor HomK(•,K) assigns a vector space V to its dual
vector space V ∗ := HomK(V,K). We obtain a contravariant functor

Mor (•,K) : (K-VS) → (K-VS)

V 7→ V ∗

V
ϕ→W 7→ W ∗

ϕ∗→ V ∗

Exercise: Show that the assignment of V to its double dual V ∗∗ defines a
functor.
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2.3 Natural transformations

Inside the category of categories, we have a well-defined notion of isomor-
phism between categories. In practice, however, a weakened notion of “al-
most isomorphic” is more useful. We will make this precise in definition 2.28
below.

2.21 Definition: Natural transformation. Let F,G : B → C be two
functors. A natural transformation η : F⇒ G between F and G is a family
of morphisms η = {ηA}A∈Ob (B), with ηA ∈ Mor C(F(A),G(A)), such that
for all morphisms f : A→ B in B the diagram

F (A)
ηA //

F (f)
��

G(A)

G(f)
��

F (B) ηB
// G(B)

commutes.

2.22 Example. Let n ∈ N>0. Consider the functors

Gln : (Fld) → (Gp)

(K,+, ·) 7→ (Gln(K), ·)
α 7→ α̃

and

U : (Fld) → (Gp)

(K,+, ·) 7→ (K∗, ·)
α 7→ α|K∗

For the second functor, (K∗, ·) denotes the multiplicative group of units,
and for the first functor compare example 2.3.

Let detK : Gln(K)→ K∗ denote the determinant map on invertible matrices
of size n over the field K. For any homomorphism of fields α : K → L, the
diagram

Gln(K)
detK //

α̃
��

K∗

α|K∗
��

Gln(L)
detL

// L∗

commutes. Thus the family of all determinants det := (detK)K∈Ob (Fld)

constitutes a natural transformation of functors

det : Gln ⇒ U.
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2.23 Remark: Functor category. Let B and C be categories, and let
F,G,H : B → C be functors. Let η = {ηA}A∈Ob (B) and % = {%A}A∈Ob (B)

define natural transformations η : F ⇒ G and % : G ⇒ H, respectively.
Then there is a composition % ◦ η : F ⇒ H of natural transformations,
which is given by % ◦ η := {%A ◦ ηA}A∈Ob (B).

It is straightforward to verify that the class of functors Mor (Cat)(B, C) can in
this way be equipped with the structure of a category, where the morphisms
are natural transformations between functors. The resulting category is
called the functor category of B and C, and it is denoted by Mor(B, C).

2.24 Definition. Let B and C be categories. Two functors F,G : B → C
are called naturally equivalent, if there exists a natural transformation η
between F and G, such that for all A ∈ Ob (B), the morphisms ηA are
isomorphisms in C. In this case, η is called a natural equivalence.

2.25 Remark. A natural equivalence of two functors F,G : B → C as
defined above is in fact an isomorphism in the category Mor(B, C).

2.26 Example. Consider the category (K-VS) of vector spaces over a
given field K. We define a functor by

F : (K-VS) → (K-VS)

V 7→ HomK(K,V )

α 7→ α∗

where for a K-linear map α : V →W and an element f ∈ HomK(K,V ) we
put α∗(f) := α ◦ f ∈ HomK(K,W ). For a vector space V we define

%V : HomK(K,V ) → V
f 7→ f(1K)

and
ηV : V → HomK(K,V )

v 7→ fv

where fv : K → V is given by f(k) := k · v. It is straightforward to see
that these families define natural transformations % : F ⇒ id (K-VS) and
η : id (K-VS) ⇒ F. Moreover, we have η ◦ % = id id (K-VS)

and % ◦ η = id F. In
other words, via η and %, the functors id (K-VS) and F are natural equivalent.

2.27 Remark: Canonical and natural isomorphisms. In the setting
of example 2.26, we would like to comment on two bits of mathematical
jargon. For a vector space V , the map %V : HomK(K,V )→ V from example
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2.26 is called a canonical morphism. By this one means, that it is a morphism
that “comes for free” with every object V , without any extra assumptions
or choices involved.

Moreover, one says that the vector spaces V and HomK(K,V ) are naturally
isomorphic. This is more than to say that there exists an isomorphism
between the two vector spaces. The word “naturally” indicates, that the
isomorphisms for all varying vector spaces V are compatible.

For contrast, consider a finite dimensional K-vector space V of dimension
n ∈ N. Since V and Kn have the same dimension over K, they are isomor-
phic. However, this isomorphism depends on the choice of a basis of V , so
it is not a canonical isomorphism. See the examples 2.29 and 2.31 below for
a discussion of the naturality of this isomorphism.

2.28 Definition. Two categories B and C are called naturally equivalent,
if there exists a pair of functors F : B → C and G : C → B, such that
for the composed functors there are natural equivalences F ◦G ∼= id B and
G ◦ F ∼= id C .

2.29 Example. Let K be a field, and consider the category (K-VSfinite)
of vector spaces of finite dimension over K. We define a category (K-VSbasis)
as follows. The objects of this category are pairs (V,B), where V is a finite
dimensional K-vector space, and B ⊂ V is a basis. A morphism from an
object (V,B) to an object (W,B′) is defined as a K-linear map α : V →W .
In other words, we have Mor (K-VSbasis) = Mor (K-VSfinite). Clearly, there
is a forgetful functor F : Mor (K-VSbasis)→ Mor (K-VSfinite), which is full
and faithful.

Now, for any finite dimensional K-vector space V we choose once and for
all a basis BV . We thus obtain a (non-canonical) functor

G : (K-VSfinite) → (K-VSbasis)

V 7→ (V,BV )

α 7→ α

Clearly, it holds F ◦G = id (K-VSfinite). Conversely, let (V,B) be an object
of the category (K-VSbasis). Then G ◦ F (V,B) = (V,BV ). Note that in
particular G ◦ F 6= id (K-VSbasis).

By definition, id V is a morphism from (V,BV ) to (V,B), and it is even an
isomorphism. For any morphism α from (V,B) to (W,B′) in (K-VSbasis),
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the diagram

G ◦ F (V,B) = (V,BV )
id V //

G◦F (α)=α
��

(V,B)

α

��
G ◦ F (W,B′) = (W,BW )

id W

// (W,B′)

commutes trivially. Hence the family {id V }V ∈Ob (K-VSbasis) is a natural
transformation G ◦ F ⇒ id (K-VSbasis). It is even a natural equivalence,
since all morphisms of the family are isomorphisms.

Summing things up, we see that the categories (K-VSbasis) and (K-VSfinite)
are naturally equivalent via the forgetful functor. The categories are not
isomorphic, since the map F : Ob (K-VSbasis) → Ob (K-VSfinite) is not
injective.

2.30 Theorem. A functor F : B → C is an equivalence of categories if
and only if F is full and faithful, and for any object C ∈ Ob (C), there exists
an object B ∈ Ob (B), such that F (B) ∼= C.

Proof. (i) First, let F be an equivalence of categories. So there exists a
functor G : C → B, together with natural equivalences η : F ◦G⇒ id C and
% : G ◦ F ⇒ id B. For any morphism f : B → B′ in B, and any morphism
g : C → C ′ in C we have commutative diagrams

G ◦ F (B)
%B //

G◦F (f)
��

B

f
��

and F ◦G(C)
ηC //

F◦G(g)
��

C

g

��
G ◦ F (B′) %B′

// B′ F ◦G(C ′) ηC′
// C ′

Note that for any object C ∈ Ob (C), we have the morphism id C ∈ Mor (C),
and thus for B := G(C) ∈ Ob (B) an isomorphism ηC : F (B)→ C.

Let f, f ′ : B → B′ be two morphisms in B with F (f) = F (f ′). Then, by the
left diagram above, we have f = %B′ ◦G(F (f))◦%−1

B = %B′ ◦G(F (f ′))◦%−1
B =

f ′. This shows the injectivity of F on the level of morphisms, and hence F
is faithful. The analogous argument shows that G is faithful, too.

Now let B,B ∈ Ob (B), and g : F (B) → F (B′) be a morphism. We define
f : B → B′ as the composed morphism

B
%−1
B // G ◦ F (B)

G(g) // G ◦ F (B′)
%B′ // B′.

30



J. Zintl 2 FUNCTORS

The left diagram from above gives

G ◦ F (f) = %−1
B′ ◦ f ◦ %B = %−1

B′ ◦ (%B′ ◦G(g) ◦ %−1
B ) ◦ %B = G(g).

Since G is faithful, this implies F (f) = g. Hence F is full.

(ii) Conversely, suppose that F is full and faithful, and for any object C ∈
Ob (C), there exists an object BC ∈ Ob (B), together with an isomorphism
ηC : F (BC) → C. Let g : C → C ′ be a morphism in C. Consider the
composed morphism

F (BC)
ηC // C

g // C ′
η−1
C′ // F (BC′).

Since F is full and faithful, there exists a unique morphism fg : BC → BC′

such that F (fg) = η−1
C′ ◦ g ◦ ηC . With this construction, we define

G : C → B
C 7→ BC

g : C → C ′ 7→ fg : BC → BC′

We claim that G is a functor. It is clear that G(id C) = idBC
. For two

composable morphisms g : C → C ′ and g′ : C ′ → C ′′ in C we compute

F (G(g′ ◦ g)) = F (fg′◦g)

= η−1
C′′ ◦ (g′ ◦ g) ◦ ηC

= η−1
C′′ ◦ g

′ ◦ ηC′ ◦ η−1
C′ ◦ g ◦ ηC

= F (fg′) ◦ F (fg)
= F (fg′ ◦ fg)
= F (G(g′) ◦G(g)).

Since F is faithful, we conclude G(g′ ◦ g) = G(g′) ◦G(g), showing the func-
toriality of G.

Now we claim that there is a natural equivalence η : F ◦G⇒ id C given by
η := {ηC}C∈Ob (C). Indeed, for any morphism g : C → C ′ in C, the diagram

F ◦G(C) = F (BC)
ηC //

F◦G(g)=F (fg)
��

C

g

��
F ◦G(C ′) = F (BC′) ηC′

// C ′

is commutative by the definition of fg. Hence η is a natural transformation,
and invertible by definition.
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To prove that F is an equivalence of categories, it only remains to show that
there is a natural equivalence % : G ◦ F ⇒ id B. To this end, we construct
a family % := {%B}B∈Ob (B) as follows. For an object B ∈ Ob (B) holds
F (B) ∈ Ob (C), and hence we have the isomorphism ηF (B) : F (BF (B)) →
F (B). By the definition of the functor G, we have BF (B) = G(F (B)), and
hence ηF (B) ∈ Mor C(F (G(F (B))), F (B)). Since the functor F is full and
faithful, there exists a unique morphism %B ∈ Mor B(G(F (B)), B) such that
F (%B) = ηF (B). By exercise 2.7, %B is an isomorphism.

For a morphism f : B → B′ in B, we compute from the definition of the
functor G

F ◦G ◦ F (f) = F (fF (f)) = η−1
F (B′) ◦ F (f) ◦ ηF (B).

Therefore the diagram

F ◦G ◦ F (B)
ηF (B) //

F◦G◦F (f)
��

F (B)

F (f)
��

F ◦G ◦ F (B′) ηF (B′)
// F (B′)

is commutative. Since the functor F is faithful, the diagram

G ◦ F (B)
%B //

G◦F (f)
��

B

f
��

G ◦ F (B′) %B′
// B′

commutes, too. In particular, % is a natural equivalence of functors. �

2.31 Example: Skeletons. Let K be a field. We define a category S by

Ob (S) := {Kn : n ∈ N} and Mor S(Kn,Km) := Mat(m,n,K).

Recall K0 = {0}, and for m = 0, we define Mat(0, n,K) = {(0, . . . , 0)},
where (0, . . . , 0) ∈ Mat(1, n,K) denotes the trivial matrix, and analogously
for n = 0.

The composition of morphisms in S is given by the usual multiplication of
matrices.
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We define a functor on the category of finite dimensional K-vector spaces
with bases by

F : (K-VSbasis) → S
V 7→ KdimK(V )

α : (V,B)→ (W,B′) 7→ MB,B′ : KdimK(V ) → KdimK(W )

where MB,B′ denotes the matrix representing the K-linear map α : V →W
with respect to the bases B and B′.
By elementary Linear Algebra, the functor F is full and faithful. Any n-
dimensional K-vector space V is (non-canonically) isomorphic to Kn. Hence
by theorem 2.30, the functor F is an equivalence of categories.

In fact, by choosing for each n ∈ N the standard basis En for Kn, we can
view S as a subcategory of (K-VSbasis). Then any finite dimensional K-
vector space is isomorphic to exactly one object of S. One says that the
category S is a skeleton of (K-VSbasis).

Note that the isomorphism (V,B) ∼= (KdimK(V ), EdimK(V )) is even natural in
the sense of remark 2.27.

2.4 Adjunction

2.32 Definition. Let A and B be categories. The product category A×B
has as its class of objects Ob (A × B) := Ob (A) × Ob (B), and for pairs of
objects (A,B), (A′, B′) ∈ Ob (A× B) we define

MorA×B((A,B), (A′, B′)) = MorA(A,A′)×Mor B(B,B′).

The composition of morphisms is defined in the obvious way in the compo-
nents of the products.

2.33 Definition. Let A, B and C be categories. A bifunctor from A and
B to C is a functor H : A× B → C.

2.34 Example. Let K be a field, and let V := (K-VS) be the category of
K-vector spaces. We define a bifunctor by

H : Vop × V → V
(V,W ) 7→ HomK(V,W )

(αo, β) 7→ α∗β∗
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For a pair of K-linear maps (αo : V → V ′, β : W → W ′) in Vop × V, we
obtain for any ϕ ∈ HomK(V,W ) by composition

V ′
α // V

ϕ //W
β //W ′

which is a K-linear map α∗β∗(ϕ) ∈ HomK(V ′,W ′). Note the commutativity
relation α∗β∗ = β∗α

∗.

Usually the dual notation is avoided, so we write (α : V ′ → V, β : W →W ′)
for a morphism in Vop × V.

For composable morphisms (α1 : V ′ → V, β1 : W → W ′) and (α2 : V ′′ →
V ′, β2 : W ′ →W ′′) one computes

H((α2, β2) ◦ (α1, β1)) = H(α1 ◦ α2, β2 ◦ β1)
= (α1 ◦ α2)∗(β2 ◦ β1)∗
= α∗2 ◦ α∗1 ◦ β2∗ ◦ β1∗
= (α∗2β2∗) ◦ (α∗1β1∗)
= H(α2, β2) ◦ H(α1, β1)

so H is indeed a covariant functor.

2.35 Remark. One defines natural transformations of bifunctors G,H
from A and B to C simply as natural transformations on the underlying
functors on the product category.

2.36 Definition. Let B and C be categories. Two functors F : B → C and
G : C → B are called adjoint, if there exists a natural equivalence

Mor C(F(•), •) ∼= Mor B(•,G(•))

of bifunctors from Bop×C to (Set). In this case, F is called a left adjoint of
G, and G a right adjoint of F.

We will meet an example of a pair of adjoint functors in proposition ??
below.
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3 Categories in Linear Algebra

3.1 Example. In Linear Algebra, we are mostly concerned with cate-
gories, where the morphisms are in particular homomorphisms of groups. A
few examples of such categories are

(Ab) Abelian groups and group homomorphisms
(Rng) rings and homomorphisms of rings

(CRng) commutative rings with one, ring homomorphisms with one
(Fld) fields and field homomorphisms

(K-VS) vector spaces over a field K, and K-linear maps
(R-Mod) R-modules and R-module homomorphisms (see remark 4.16)

In this section we want to collect a few concepts from category theory, which
are particularly useful for such categories.

3.1 Kernels and cokernels

3.2 Definition. Let C be a category.
(i) An object T ∈ Ob (C) is called a terminal object, if for all A ∈ Ob (C)
there exists one and only one morphism tA : A→ T .
(ii) An object I ∈ Ob (C) is called an initial object, if for all A ∈ Ob (C)
there exists one and only one morphism iA : I → A.
(iii) An object N ∈ Ob (C) is called a null object, if it is both initial and
terminal in C.

3.3 Examples. a) The trivial group {0} is a null object in both (Gp) and
in (Ab).

b) For any field K, the trivial space {0} is a null object in (K-VS).

c) The empty set ∅ is the unique initial object in the category (Set). Any
one-pointed set {�} is terminal.

d) In the category of fields (Fld), there is neither an initial nor a terminal
object.

3.4 Remark. If an initial, terminal or null object exists, then it is unique
up to a (unique) isomorphism (see also the proof of lemma 3.6 below). We
shall denote a null object in a category C by OC .
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3.5 Definition. Let C be a category, in which a null object OC exists. Let
A,B ∈ Ob (C). The composed morphism

A
tA //

oA,B

66OC
iB // B

is called the null morphism oA,B : A→ B.

3.6 Lemma. The null morphism oA,B ist uniquely determined.

Proof. Let O,O′ be two null objects in C. Consider the commutative dia-
gram

O
i

  
ν

��

A

t

>>

t′   

B

O′
i′

>>ν′

OO

Note that the defining property of null objects implies that all arrows in
the above diagram are uniquely determined. It also implies that the two
morphisms ν ′ ◦ ν : O → O and idO : O → O must be identical. Therefore
we compute

i′ ◦ t′ = i ◦ ν ′ ◦ ν ◦ t = i ◦ t.

This verifies that the null morphism oA,B is independent of the choice a null
object in C. �

3.7 Example. Let (Ab) be the category of Abelian groups, with the trivial
group OC := {0} as its unique null object. For any pair of Abelian groups
G and H, the null morphism oG,H : G → H is by definition the group
homomorphism, which factors through the trivial group. Hence oG,H is the
group homomorphism mapping constantly to the identity element 0H ∈ H.

3.8 Lemma. Let C be a category with a null object O. Then for all objects
A,B ∈ Ob (C) and all morphism f : A→ B hold

oB,O ◦ f = oA,O and f ◦ oO,A = oO,B.

36



J. Zintl 3 CATEGORIES IN LINEAR ALGEBRA

Proof. By definition, O is a terminal object in C. Thus the set of morphisms
from B to O is Mor C(A,O) = {tA}, i.e. it contains exactly one element. In
particular oB,O ◦ f = tA = oA,O. The second identity follows analogously
from the fact, that O is an initial object. �

3.9 Definition. Let C be a category with a null object. Let A and B be
objects in C, and let f : A→ B be a morphism. A kernel of f is a morphism
k : K → A in C such that

f ◦ k = oK,B

and satisfying the following universal property of the kernel:

For any morphism d : D → A in C with f ◦ d = oD,B, there exists a unique
morphism d′ : D → K, such that the diagram

D
d

  
d′

��
K

k
// A

f // B

commutes.

3.10 Lemma. Let k1 : K1 → A and k2 : K2 → A be two kernels of
a morphism f : A → B in C. Then there exists a unique isomorphism
u : K1 → K2 such that k1 = k2 ◦ u.

Proof. Indeed, by the universal property of K2 and K1, there exist mor-
phisms k′1 : K1 → K2 und k′2 : K2 → K1 in C, such that k2 ◦ k′1 = k1 and
k1 ◦ k′2 = k2. Hence

k1 ◦ (k′2 ◦ k′1) = (k1 ◦ k′2) ◦ k′1 = k2 ◦ k′1 = k1.

The universal property of K1, applied to the diagram

K1

k1

&&

k′2◦k′1
��

id K1
��

K1
k1

// A
f // B

implies the identity k′2 ◦ k′1 = idK1 . Analogously, we obtain k′1 ◦ k′2 = idK2 ,
so u := k′1 is an isomorphism. Its uniqueness follows from the universal
property of the kernel k2. �
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3.11 Proposition. Consider the category (Gp) of groups. Let α : G →
G′ be a homomorphism of groups. Let ker(α) denote the group-theoretical
kernel of α, i.e. the subgroup of G given by ker(α) := {g ∈ G : α(g) = 0G′}.
Let ι : ker(α)→ G denote the inclusion homomorphism. Then ι is a kernel
of α in the sense of definition 3.9.

Proof. The identity α ◦ ι = oker(α),G′ is trivial by the definition of ker(α),
see example 3.7. It only remains to verify that ι satisfies the universal
property of the kernel. Let H be a group, and let β : H → G be a group
homomorphism such that α ◦ β = oH,G′ . The latter identity is equivalent to
saying that for all h ∈ H holds α ◦ β(h) = 0G′ . Hence for all h ∈ H holds
β(h) ∈ ker(α). In particular, the map

β′ : H → G
h 7→ β(h)

is well-defined, and a homomorphism of groups. It clearly satisfies β = ι◦β′.
Note that the inclusion ι is a monomorphism, so β′ is uniquely determined
by this property. �

3.12 Remark. a) It follows from lemma 3.10 that for any kernel k : K →
G of a group homomorphism α : G→ G′ there exists a unique isomorphism
u : K → ker(α) such that k = ι ◦ u.

b) Note that the proof of proposition 3.11 goes through without changes
for other categories “over” the category (Gp), like for example categories of
vector spaces, or any other category from example 3.1.

3.13 Definition. Let C be a category with a null object. Let A and B
be objects in C, and let f : A → B be a morphism. A cokernel of f is a
morphism q : B → Q in C such that

q ◦ f = oA,Q

and satisfying the following universal property of the cokernel:

For all morphisms d : B → D in C with d ◦ f = oA,D, there exists a unique
morphism d : Q→ D, such that the diagram

D

A
f
// B

d

??

q
// Q

d

OO

commutes.
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3.14 Lemma. Consider the category (Gp) of groups. Let α : G → G′ be
a homomorphism of groups. Let im(α) denote the group-theoretical image
of α, i.e. the subgroup of G′ given by im(α) := {α(g) : g ∈ G}. Suppose
that im(α) is a normal subgroup of G′. Let π : G′ → G′/im(α) denote the
canonical quotient homomorphism. Then π is a cokernel in the sense of
definition 3.13.

Proof. The identity π◦α = oG,G′/im(α) is clear by the definition ofG′/im(α).
Hence it suffices to verify the universal property for π. Suppose that H
is a group, together with a group homomorphism % : G′ → H such that
% ◦ α = oG,H . We define a map

% : G′/im(α) → H
[g′] 7→ %(g′)

where g′ ∈ G′ is a representative of the equivalence class [g′] ∈ G′/im(α).
We claim that % is well-defined. Indeed, let g′, g′′ ∈ G′ be two representatives
of [g′]. Then g′′ − g′ ∈ im(α), so there exists some element g ∈ G such that
α(g) = g′′ − g′. Now we compute

%(g′′) = %(g′ + α(g)) = %(g′) + % ◦ α(g) = %(g′)

by the assumption on %. Note that % is a group homomorphism, and by
construction the diagram

H

G α
// G′

%
::

π
// G′/im(α)

%

OO

commutes. Since π is surjective, it is an epimorphism by lemma 2.10. Hence
the identity % = π ◦ % determines % uniquely. �

3.15 Remark. Analogously to remark 3.12, for any cokernel q : G′ → Q
of a group homomorphism α : G → G′, such that the image is a normal
subgroup, there exists a unique isomorphism u : G′/im(α) → Q, such that
for the canonical quotient morphism π : G′ → G′/im(α) holds q = u ◦ π.

Note that if im(α) is not a normal subgroup, then the canonical quotient
map π : G′ → G′/im(ϕ) is not a morphism in the category (Gp).
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3.16 Lemma. Let C be a category with a null object. Let f : A→ B be a
morphism in C. Let k : K → A be a kernel and q : B → Q be a cokernel of
f . Then k is a monomorphism, and q is an epimorphism.

Proof. Let h, h′ : D → K be two morphisms in C such that k◦h = k◦h′. To
verify that k is a monomorphism, we need to show that h = h′. To do this,
we put d := k ◦ h = k ◦ h′. We compute f ◦ d = f ◦ k ◦ h = oK,B ◦ h = oD,B.
Now consider the diagram

D
d

&&
h′

��
h
��
K

k
// A

f
// B

The universal property of the kernel k now implies h = h′.

The proof of the corresponding statement for q is left to the reader as an
exercise. �

3.17 Lemma. Let C be a category with a null object O. Let f : A→ B be
a morphism in C.
a) If f is a monomorphism, then oO,A : O → A is a kernel of f .
b) If f is an epimorphism, then oB,O : B → O is a cokernel of f .

Proof. As usual, we only prove the first claim, leaving the second one as
an exercise to the reader.

For the morphism f clearly holds f ◦ oO,A = oO,B. To verify the universal
property, we consider an arbitrary morphism d : D → A such that f ◦ d =
oD,B. We also have the identity f◦oD,A = oD,B. Since f is a monomorphism,
we conclude d = oD,A, and hence by the definition of the null morphism,
d = iA ◦ tD. Thus we have a commutative diagram

D

tD
��

d

  
O

iA
// A

f
// B

Since O is a terminal, the uniqueness of tD is trivial. �

3.18 Lemma. Let C be a category with a null object. Let f : A→ B be a
morphism in C. A morphism k : K → A is a kernel of f in C if and only if
ko : A→ K is a cokernel of fo : B → A on Cop.
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Proof. This follows immediately from the definitions. �

3.19 Remark. The above lemma 3.18 states that the dual notion of “ker-
nel” is “cokernel”, and not “image”. In fact, the definition of an image is
somehow subtle.

3.20 Definition. Let C be a category, and let f : A→ B be a morphism
in C. An image of f is a monomorphism i : I → B, such that there exists an
epimorphism f ′ : A → I, such that f = i ◦ f ′, which satisfies the universal
property of the image:

For any pair consisting of a monomorphism m : J → B and an epimoprhism
e : A→ J in C, such that m◦ e = f , there exists a morphism u : I → J such
that the diagram

J
m

��
A

e

??

f ′ //

f

77I

u

OO

i // B

commutes, i.e. the identity i = m ◦ u holds.

3.21 Remark. In the situation of definition 3.20, a number of implications
hold.

• the epimorphism f ′ is uniquely determined by i. Indeed, if i ◦ f ′′ =
f = i ◦ f ′, then f ′′ = f ′ follows, since i is a monomorphism;

• the identity i = m◦u implies the identity e = u◦f ′. Indeed, it follows
from m ◦ e = f = i ◦ f ′ = m ◦ u ◦ f ′, since m is a monomorphism;

• the morphism u is uniquely determined by m. Indeed, if m ◦ u = i =
m ◦ u′, then u = u′ follows, since m is a monomorphism;

• the morphism u is a monomorphism and an epimorphism. Indeed,
this follows from exercise 1.20, since u ◦ f ′ = e is an epimorphism and
m ◦ u = i is a monomorphism.

In some sense, the image of f : A→ B should be thought of as the “smallest
subobject” of B, through which f factors. As before, it is unique up to a
unique isomorphism.
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3.22 Lemma. Consider the category (Set) of sets. Let f : A → B be a
map of sets, and let f(A) := {f(a) : a ∈ A} denote the set-theoretic image
of f . Then the inclusion map i : f(A)→ B is an image of f .

Proof. Obviously, f factors through the well-defined map

f ′ : A → f(A)
a 7→ f(a)

as f = i ◦ f ′, with f ′ surjective, and i injective. Let f = m ◦ e be another
factorization with a surjective map e : A → C and an injective map m :
C → B. For an element b ∈ f(A), there exists an element a ∈ A, such that
f(a) = b. Hence m(e(a)) = b, so b ∈ m(C). Since m is injective, there exists
a unique cb ∈ C, such that m(cb) = b. This defines a map

u : f(A) → C
b 7→ cb

which satisfies m ◦ u = i. �

3.23 Exercise. Define and discuss the dual notion of a “coimage”.

3.2 Ab-categories

3.24 Definition. A category C is called an Ab-category, if for all A,B ∈
Ob (C) the set Mor C(A,B) is an Abelian group, and the composition is
bilinear in the sense that for all morphisms f, f ′ : A→ B and g, g′ : B → C
in C holds

(g + g) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′.

For A,B ∈ Ob (C), we call the identity element 0A,B ∈ Mor C(A,B) of the
Abelian group the zero morphism from A to B.

Examples of Ab-categories are in particular all categories of example 3.1.

3.25 Lemma. Let C be an Ab-category. Then for all objects A,B,C ∈
Ob (C) and all morphisms f : A→ B and g : B → C holds

g ◦ 0A,B = 0A,C and 0B,C ◦ f = 0A,C .
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Proof. For g : B → C we compute in the group Mor C(A,C)

g ◦ 0A,B = g ◦ (0A,B + 0A,B) = g ◦ 0A,B + g ◦ 0A,B,

and hence g ◦ 0A,B = 0A,C . The proof of the second equality is completely
analogous. �

3.26 Lemma. Let C be an Ab-category, in which a null object O exists.
Then for all objects A,B ∈ Ob (C) holds for the null morphism oA,B = 0A,B.

Proof. Since the identity element of a group is unique, it is enough to prove
for all A,B ∈ Ob (C) the identity oA,B + oA,B = oA,B.

Recall that by definition oA,B = iB ◦ tA for the unique morphisms satisfying
Mor C(A,O) = {tA} and Mor C(O,B) = {iB}. Because these two groups
are trivial, we must have tA = 0A,O and iB = 0O,B. In particular, it holds
tA + tA = tA. Now we compute

oA,B + oA,B = iB ◦ tA + iB ◦ tA = iB ◦ (tA + tA) = iB ◦ tA = oA,B

as desired. �

3.27 Proposition. Let C be an Ab-category, in which a null object O
exists. Let f : A→ B be a morphism in C. The morphism f is
a) a monomorphism if, and only if oO,A : O → A is a kernel of f .
b) an epimorphism if, and only if oB,O : B → O is a cokernel of f .

Proof. One direction of the implications has already been shown in lemma
3.17. We only prove assertion a), while b) follows from duality.

Suppose that oO,A : O → A is a kernel of f . Consider two morphisms
d, d′ : D → A such that f ◦ d = f ◦ d′. Using the group structure on
Mor C(A,B) this is equivalent to the identity f ◦ (d − d′) = 0D,B. Put
∆ := d−d′. By the universal property of the kernel, we have a commutative
diagram

D
∆

  
∆′

��
O oO,A

// A
f
// B

Since O is a null object, we have oO,A = iA and ∆′ = tD, and thus ∆ =
iA ◦ tD = oD,A = 0D,A, using lemma 3.26. This implies d = d′. �
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3.3 Additive and exact functors

3.28 Definition. Let B and C be Ab-categories.

a) A functor F : B → C is called additive if for all A,B ∈ Ob (B) and all
f, g ∈ Mor B(A,B) holds F (f + g) = F (f) + F (g).

b) An additive functor F : B → C is called left exact if for all A,B ∈ Ob (B)
and all f ∈ Mor B(A,B) and all kernels k : K → A of f holds that F (k) :
F (K)→ F (A) is a kernel of F (f).

c) An additive functor F : B → C is called right exact if for all A,B ∈ Ob (B)
and all f ∈ Mor B(A,B) and all cokernels q : B → Q of f holds that
F (q) : F (B)→ F (Q) is a cokernel of F (f).

b) An additive functor F : B → C is called exact if it is both left exact and
right exact.

3.29 Lemma. Let F : B → C be an additive functor between Ab-categories.
Then for all objects A,B ∈ Ob (C) holds F (0A,B) = 0F (A),F (B).

Proof. We compute F (0A,B) = F (0A,B + 0A,B) = F (0A,B) + F (0A,B), and
hence the claim follows from the properties of groups. �

3.30 Example. Let B be one of the categories of example 3.1, and hence
in particular an Ab-category. Let A ∈ Ob (B) be fixed.

As in example 2.18 we consider the covariant Mor -functor defined by

Mor (A, •) : B → (Ab)

B 7→ Mor B(A,B)

α 7→ α∗

.

a) The functor Mor (A, •) is additive.

Indeed, let α, β : B → B′ be morphisms in B. Then (α+β)∗ : Mor B(A,B)→
Mor B(A,B′) is a morphism in (Ab). In particular, for any ϕ ∈ Mor B(A,B),
we have a morphism (α + β)∗(ϕ) ∈ Mor B(A,B′). To understand this
morphism, we need to consider for all elements a ∈ A the image element
(α+ β)∗(ϕ)(a) ∈ B′. We compute from the definitions

(α+β)∗(ϕ)(a) = (α+β)◦ϕ(a) = α◦ϕ(a) +β ◦ϕ(a) = α∗(ϕ)(a) +β∗(ϕ)(a).
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From this we obtain the identity of morphisms in Mor B(A,B′)

(α+ β)∗(ϕ) = α∗(ϕ) + β∗(ϕ) for all ϕ ∈ Mor B(A,B),

and therefore the identity of morphisms in (Ab)

(α+ β)∗ = α∗ + β∗.

b) The functor Mor (A, •) is left exact.

Indeed, consider a kernel κ : K → B of α : B → B′ in B. By definition,
we have α ◦ κ = oK,B′ . Hence by the functoriality of F := Mor (A, •) we
obtain F (α)◦F (κ) = F (α◦κ) = F (oK,B′) = 0F (K),F (B′). So it only remains
to verify the universal property for F (κ). Let δ : D → F (B) be a morphism
in (Ab), such that F (α) ◦ δ = 0D,F (B′). In terms of diagrams, we have

D

δ

$$
?
��

F (K)
F (κ)

// F (B)
F (α)

// F (B′)

We need to construct the dotted arrow as a unique morphism, which makes
the diagram commutative. Let d ∈ D. Then δ(d) ∈ F (B) = Mor B(A,B).
So we have a diagram

A
δ(d)

  
ud
��
K κ

// B α
// B′

Note that the existence of the vertical morphism ud : D → E follows from
the universal property of the kernel, since we compute

α ◦ δ(d) = α∗(δ(d)) = F (α)(δ(d))
= F (α) ◦ δ(d) = 0D,F (B′)(d) = 0F (B′) = 0A,B′ .

By construction, ud ∈ Mor B(A,K) = F (K). This defines a map

u : D → F (K)
d 7→ ud

Note that u is indeed a morphism in (Ab). To see this, consider elements
d, d′ ∈ D. Then u(d + d′) ∈ F (K) = Mor B(A,K). For all elements a ∈ A
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we compute for their images in B

κ ◦ u(d+ d′)(a) = κ ◦ ud+d′(a)
= δ(d+ d′)(a)
= δ(d)(a) + δ(d′)(a)
= κ ◦ ud(a) + κ ◦ ud′(a)
= κ ◦ (u(d) + u(d′))(a)

Since κ is a monomorphism, we conclude u(d+ d′) = u(d) + u(d′).

The identity F (κ) ◦ u = δ follows immediately from the construction of u.
So it finally remains to show that u is the unique morphism satisfying this
identity. Suppose that F (κ) ◦ u′ = δ holds for some morphism u′ in (Ab).
By definition, for all d ∈ D, we compute

κ ◦ u′(d) = κ∗(u
′(d)) = F (κ) ◦ u′(d) = F (κ) ◦ u(d) = κ∗(u(d)) = κ ◦ u(d).

Hence κ ◦ u′ = κ ◦ u, and the claim follows again from the fact, that κ is a
monomorphism.

c) The functor Mor (A, •) is (in general) not right exact.

As a counter example, consider for a prime number p ∈ N the homomorphism
of Abelian groups α : Z→ Z with α(a) := pa. The canonical quotient map
π : Z→ Zp := Z/pZ is a cokernel of α by lemma 3.14

Consider the functor Mor (A, •) for A := Zp on the category (Ab) of Abelian
groups. The cokernel diagram

Z α // Z π // Zp

maps to the diagram

Hom(Zp,Z)
α∗ // Hom(Zp,Z)

π∗ // Hom(Zp,Zp)

It is easy to see that Hom(Zp,Z) = {0}, but 0 6= id Zp ∈ Hom(Zp,Zp).
Therefore π∗ is not surjective, and hence not a cokernel by lemma 3.16.
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4 Modules

The theory of modules is a straightforward generalization of the theory of
vector spaces. The basic idea is to replace the field of scalars, over which
a vector space is defined, by a commutative ring. Since the concept of a
commutative ring is less restrictive than that of a field, a far more versatile
theory arises.

As pre-requisites for the understanding of this sections, we assume the the-
ory of vector spaces over fields at the level of a standard introductory course.
Furthermore, the reader should be familiar with the concept of groups, their
homomorphisms and their quotients, including the groups of congruent num-
bers.

4.1 Definitions and examples

There is a rich and beautiful theory of rings. It is time well-spent to look
into some of the many books on the subject. For our purposes, it will be
enough to consider the special case of commutative rings.

4.1 Definition. A commutative ring is a triple (R,+R, ·R), where

(1) (R,+R) is an Abelian group,

(2) (R, ·R) is a commutative semi-group with identity element 1R ∈ R,
such that for all r, s, t ∈ R holds

(3) (r +R s) ·R t = r ·R t +R s ·R t.

4.2 Remark. Sometimes a triple (R,+R, ·R) as defined in 4.1 is more pre-
cisely called a commutative ring with a multiplicative identity element. Since
we will only be concerned with commutative rings, where a multiplicative
identity element exists, we include this as apart of our definition. See also
the convention adopted in [Bou], and others.

Note that we need not include the multiplicative identity element 1R ∈ R as
part of the defining data. In fact, if a multiplicative identity element exists,
it is necessarily unique, as the following lemma shows.

4.3 Lemma. Let (R,+R, ·R) be a commutative ring. Then for all r, s ∈ R
the following equalities hold:

(i) 0R ·R r = 0R
(ii) (−1R) ·R r = −r
(iii) (−r) ·R (−s) = r ·R s.
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If e ∈ R is an element, such that e ·R r = r holds for all r ∈ R, then e = 1R.

Proof. To prove (i), we apply 4.1(3) and compute 0R · r = (0R + 0R) · r =
0R · r+ 0R · r, and hence, since (R,+R) is a group, 0R · r = 0R. From this we
obtain 0R = (1R− 1R) · r = 1R · r+ (−1R) · r, so that (−1R) · r is the unique
additive inverse to r. This shows (ii). Combining (ii) with the associativity
and commutativity of (R, ·R) implies (iii).

Finally, if r = e · r holds for all r ∈ R, then we have in particular for r = 1R
the equality 1R = e · 1R = e. �

4.4 Exercise. Let (R,+R, ·R) be a commutative ring such that 1R = 0R.
Show that in this case the set R must be bijective to {0}.

4.5 Examples. a) The prototype of all commutative rings is the ring
of integers (Z,+, ·). Analogously, there are the rings of rational, real and
complex numbers, denoted by (Q,+, ·), (R,+, ·) and (C,+, ·), respectively.
More generally, any field (K,+, ·) is in particular a commutative ring.

b) Let n ∈ N be a fixed natural number. Then the set of congruent numbers
modulo n inherits from the ring of integers the structure of a commutative
ring (Z/nZ,+, ·).
c) For any commutative ring (R,+R, ·R), there is a commutative ring of
polynomials (R[X],+, ·).
d) Let (R,+R, ·R) be a commutative ring, and let n ∈ N>0 be fixed. We
define the set of diagonal matrices by

Dn(R) :=


 a11 · · · a1n

...
. . .

...
an1 · · · ann

 ∈ Mat(n, n,R) : aij = 0 for i 6= j

 .

It is easy to see, using the usual addition and multiplication of matrices,
that the triple (Dn(R),+, ·) is a commutative ring, where the multiplicative
identity element is the identity matrix in Mat(n, n,R).

4.6 Remark. Note that the last example 4.5d exhibits two key features,
which make the theory of rings so much broader the theory of fields.

Clearly, as the multiplicative structure (R, ·R) of a given commutative ring
(R,+R, ·R) is only assumed to be a semi-group, we cannot expect to find for
each element r ∈ R a multiplicative inverse s ∈ R, such that r ·Rs = 1R. The
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example of the integers shows how to handle this situation: by enlarging4

the ring of integers (Z,+, ·) to the ring of rational numbers (Q,+, ·).
The second phenomenon has a more profound impact. In a commutative
ring (R,+R, ·R), there may (and in the case of example 4.5d, with n ≥ 2
there always will) exist elements r, s ∈ R, which are both non-zero, but such
that r ·R s = 0R. These zero divisors will have a significant effect on our
considerations below.

4.7 Definition. A commutative ring (R,+R, ·R) is called an integral do-
main, if 1R 6= 0R, and for all pairs of elements r, s ∈ R with s 6= 0R, the
equality r ·R s = 0R implies r = 0R.

4.8 Examples. a) The ring of integers (Z,+, ·) is an integral domain.

b) All fields (K,+K , ·K) are integral domains.

c) The ring (Z/nZ,+, ·) is an integral domain if and only if n = 0 or n is a
prime number.

d) If (R,+R, ·R) is an integral domain, then (Dn(R),+, ·) is an integral
domain if and only if n = 1.

4.9 Definition. Let (R,+R, ·R) be a commutative ring. An R-module is
a triple (M,+M , λ), where

(1) (M,+M ) is an Abelian group,

(2) λ : R×M →M is a map,

such that for all r, s ∈ R and all m,n ∈M holds

(3) λ(r,m+M m′) = λ(r,m) +M λ(r,m′);

(4) λ(r +R s,m) = λ(r,m) +M λ(s,m);

(5) λ(r ·R s,m) = λ(r, λ(s,m));

(6) λ(1R,m) = m.

4.10 Remark. The map λ : R ×M → M of definition 4.9 is called the
operation of R on M . Usually, one writes for elements r ∈ R and m ∈ M
shorter r ·M m := λ(r,m), or simply rm.

In general, when there is no danger of confusion, the indices of compositions
and operations are omitted, both for commutative rings and modules.

4In algebra, this is the extension of the integral domain Z to its field of fractions Q.
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4.11 Lemma. Let (R,+R, ·R) be a commutative ring, and let (M,+M , ·M )
be an R-module. Then for all r ∈ R and all m ∈M hold:

(i) 0R ·M m = 0M
(ii) r ·M 0M = 0M
(iii) (−1R) ·M m = −m.

Proof. The proof is analogous to the proof of lemma 4.3. �

4.12 Examples. a) For any commutative ring (R,+, ·), the triple (R,+, ·)
itself is an R-module.

b) Let (K,+, ·) be a field. Then a triple (M,+, ·) is a K-module if and only
if (M,+, ·) is a K-vector space.

c) For a commutative ring (R,+, ·), let R[X] denote the set of polynomials
in X with coefficients in R. Using the obvious operation of R on R[X],
one obtains an R-module (R[X],+, ·). Analogously, there is an R-module of
formal power series (R[[X]],+, ·).
d) Let n ∈ N>0 be fixed. For a commutative ring (R,+, ·), we define

λ : Dn(R)×Mat(n, n,R) → Mat(n, n,R)
(D,A) 7→ DA

by the multiplication of matrices. It is easy to verify that in this way
(Mat(n, n,R),+, λ) is a Dn(R)-module.

4.13 Definition. a) Let (R,+R, ·R) and (S,+S , ·S) be commutative rings.
A homomorphism of commutative rings

ϕ : (R,+R, ·R)→ (S,+S , ·S)

is a homomorphism of groups ϕ : (R,+R)→ (S,+S), such that ϕ(1R) = 1S ,
and for all r, s ∈ R holds

ϕ(r ·R s) = ϕ(r) ·S ϕ(s).

b) Let (R,+R, ·R) be a commutative ring. Let (M,+M , ·M ) and (N,+N , ·N )
be R-modules. A homomorphism of R-modules

α : (M,+M , ·M )→ (N,+N , ·N )

is a homomorphism of groups α : (M,+M ) → (N,+N ), such that for all
r ∈ R, and all m ∈M holds

α(r ·M m) = r ·N α(m).

The set of all such homomorphisms is denoted by HomR(M,N).
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4.14 Remark. a) If (K,+, ·) is a field, then a homomorphism of K-
modules is called a homomorphism of K-vector spaces.

b) In analogy with the theory of vector spaces, a homomorphism of R-
modules is also called an R-linear map. When the defining structures are
clear from the context, an R-linear map α : (M,+M , ·M ) → (N,+N , ·N ) is
usualy simply written as α : M → N .

4.15 Lemma. Compositions of homomorphisms of commutative rings are
homomorphisms of commutative rings. Compositions of homomorphisms of
R-modules are homomorphisms of R-modules.

Proof. Straightforward. �

4.16 Remark. a) Commutative rings (by definition with multiplicative
identity elements) together with their homomorphisms form a category (CR).
The ring of integers (Z,+, ·) is an initial object in (CR), and the trivial ring
({0},+, ·) is a terminal object. In particular, there exists no null object.

b) For any commutative ring (R,+R, ·R), there is a category (R-Mod) of
R-modules and their homomorphisms. The trivial R-module ({0},+, ·) is a
null object in (R-Mod).

4.17 Remark. a) Let (R,+R, ·R) be a commutative ring. For a pair of
R-modules (M,+M , ·M ) and (N,+N , ·N ), consider the set HomR(M,N) of
all homomorphisms from (M,+M , ·M ) to (N,+N , ·N ). By lemma 4.31, the
triple (HomR(M,N),+pw, ·pw) is an R-module, where the compositions are
defined point-wise.

b) Let (L,+L, ·L) be another R-module. Consider two pairs of homomor-
phisms α, α′ ∈ HomR(L,M) and β, β′ ∈ HomR(M,N). For any ` ∈ L we
compute

(β +pw β
′) ◦ (α+pw α

′)(`) = (β +pw β
′)((α+pw α

′)(`))

= β((α+pw α
′)(`)) +N β′((α+pw α

′)(`))
= β(α(`) +M α′(`)) +N β′(α(`) +M α′(`))
= β(α(`)) +N β(α′(`)) +N β′(α(`)) +N β′(α′(`))
= (β ◦ α+pw β ◦ α′ +pw β

′ ◦ α+pw β
′ ◦ α′)(`).

Thus (β +pw β
′) ◦ (α +pw α

′) = β ◦ α +pw β ◦ α′ +pw β
′ ◦ α +pw β

′ ◦ α′
holds as an identity of homomorphisms. In other words, the composition of
homomorphisms of modules is bilinear in the sense of definition 3.24, and
hence (R-Mod) is an Ab-category .
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4.18 Exercise. a) Let (R,+R, ·R) be a commutative ring. Construct a
functor

F : (R-Mod)→ (Z-Mod).

b) Show that any Abelian group (G,+) can be equipped in a natural way
with the structure of a Z-module, and construct an isomorphism of categories

F : (Z-Mod)→ (Ab).

4.19 Remark. a) Let ϕ : (R,+R, ·R) → (S,+S , ·S) be a homomorphism
of commutative rings. Let (M,+M , ·M ) be an S-module. We define an
operation of R on M by

·ϕ : R×M → M
(r,m) 7→ ϕ(r) ·N m.

It is easy to verify that in this way, the triple (M,+M , ·ϕ) is an R-module.
Moreover, consider a homomorphism of S-modules α : (M,+M , ·M ) →
(N,+N , ·N ). For any r ∈ R and any m ∈M one computes

α(r ·ϕ m) = α(ϕ(r) ·M m) = ϕ(r) ·N α(m) = r ·ϕ α(m)

directly from the definition of ·ϕ and the S-linearity of α. This shows that
α is in fact a homomorphism of R-modules. Summing things up, we obtain
a functor

Fϕ : (S-Mod) → (R-Mod)

(M,+M , ·M ) 7→ (M,+M , ·ϕ)

α : (M,+M , ·M )→ (N,+N , ·N ) 7→ α : (M,+M , ·ϕ)→ (N,+N , ·ϕ).

b) More generally, the above construction induces a contravariant functor
from the category of commutative rings into the category of categories:

F : (CR) → (Cat)

(R,+R, ·R) 7→ (R-Mod)

ϕ : (R,+R, ·R)→ (S,+S , ·S) 7→ Fϕ : (S-Mod)→ (R-Mod).

4.2 Submodules and quotients

Throughout the rest of this section let (R,+R, ·R) be a commutative ring.
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4.20 Definition. Let (M,+M , ·M ) be an R-module. An R-submodule of
(M,+M , ·M ) is an R-module (N,+N , ·N ), such that (N,+N ) is a subgroup
of (M,+M ), and for all (r, n) ∈ R×N holds r ·N n = r ·M n.

4.21 Lemma. Let (M,+M , ·M ) be an R-module. Let (N,+N ) be a sub-
group of (M,+M ), and let ·N := ·M |(R × N) denote the restriction of the
composition map. Then (N,+N , ·N ) is an R-submodule of (M,+M , ·M ) if
and only if for all r ∈ R and all n ∈ N holds r ·M n ∈ N .

Proof. If (N,+N , ·N ) is an R-submodule, then by definition for all r ∈ R
and all n ∈ N holds r·Mn = r·Nn ∈ N . Conversely, if (N,+N ) is a subgroup
of (M,+M ), such that for all r ∈ R and all n ∈ N holds r ·M n ∈ N , then
the map ·N : R × N → N with r ·N n := r ·M n is well-defined and an
operation of R on N . The triple (N,+N , ·N ) satisfies all defining axioms of
an R-module, since the triple (M,+M , ·M ) does. �

4.22 Example. Let α : (M,+M , ·M ) → (N,+N , ·N ) be a homomorphism
of R-modules. By definition, α : (M,+M )→ (N,+N ) is a homomorphism of
groups, so there exists a kernel (ker(α),+ker(α)) as a subgroup of (M,+M ),
with ker(α) := {m ∈M : α(m) = 0N}. For any r ∈ R and any m ∈ ker(α)
we compute α(r ·M m) = r ·N α(m) = r ·N 0N = 0N , hence r ·M m ∈ ker(α).
We can therefore define an operation

·ker(α) : R× ker(α) → ker(α)

(r,m) 7→ r ·M m

with which (ker(α),+ker(α), ·ker(α)) becomes an R-module. We call this the
kernel of the homomorphism α of R-modules.

4.23 Exercise. Show that the forgetful functor F : (R-Mod) → (Ab) is
faithful. Use this to prove that for a homomorphisms α : (M,+M , ·M ) →
(N,+N , ·N ) of R-modules the following are equivalent:

(i) α is injective;
(ii) α is a monomorphism;
(iii) ker(α) = {0M}.

4.24 Example. Consider (R,+R, ·R) itself as an R-module. Then an ideal
of the ring (R,+R, ·R) is defined as a submodule (I,+I , ·I) of (R,+R, ·R).
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4.25 Example. Let (R,+, ·) be an integral domain, and let (M,+M , ·M )
be an R-module. We define

T (M) := {m ∈M : ∃ 0R 6= r ∈ R such that r ·M m = 0M}.

It is easy to verify that this defines a submodule of (M,+M , ·M ), which is
called the R-torsion submodule of M .

For example, if M is a vector space over a field, then T (M) = {0M}. How-
ever, if M = Z/nZ, for some n ∈ N>0, considered as a Z-module, then
T (M) = M .

4.26 Remark. Let (M,+M , ·M ) be an R-module, and let (N,+N , ·N ) be
a submodule. Since (N,+N ) is a normal subgroup of (M,+M ), the quotient
group (M/N,+M/N ) exists. It is again an Abelian group, and the canonical
quotient map π : M →M/N is a homomorphism of groups.

Let r ∈ R and m,m′ ∈M such that m−m′ ∈ N . Then we compute

r ·M m− r ·M m′ = r ·N (m−m′) ∈ N,

hence we obtain a well-defined operation

·M/N : R×M/N → M/N

(r, [m]) 7→ [r ·M m]

where as usual [m] := π(M) denotes the equivalence class of an element
m ∈M . One verifies directly from the definitions that (M/N,+M/N , ·M/N )
is an R-module, and the canonical quotient map π : M →M/N becomes a
homomorphism of R-modules.

4.27 Definition. Let (M,+M , ·M ) be an R-module, and let (N,+N , ·N )
be a submodule. The quotient module of (M,+M , ·M ) by (N,+N , ·N ) is the
R-module (M/N,+M/N , ·M/N ).

4.28 Example. Let α : (M,+M , ·M ) → (N,+N , ·N ) be a homomorphism
of R-modules. By definition, α : (M,+M )→ (N,+N ) is a homomorphism of
groups, so there exists an image (im(α),+im(α)) as a subgroup of (N,+N ).
Let r ∈ R and n ∈ im(α). By definition, there exists an m ∈ M , such that
α(m) = n. From this we compute r ·N n = r ·N α(m) = α(r ·M m) ∈ im(α).
Therefore there is a well-defined operation

·im(α) : R× im(α) → im(α)

(r, n) 7→ r ·N n
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with which (im(α),+im(α), ·im(α)) becomes an R-module. We call this R-
module the image of the homomorphism α of R-modules. The quotient
module (N/im(α),+N/im(α), ·N/im(α)) is called the cokernel of α, and denoted
by coker(α) := N/im(α).

4.29 Exercise. Prove that for a homomorphisms α : (M,+M , ·M ) →
(N,+N , ·N ) of R-modules the following are equivalent:

(i) α is surjective;
(ii) α is a epimorphism;
(iii) coker(α) = {[0N ]}.

4.30 Exercise. Show that kernels and cokernels of homomorphisms of
modules correspond to kernels and cokernels in the categorical sense.

4.3 Dual modules

4.31 Lemma. Let (R,+R, ·R) be a commutative ring, and let (M,+M , ·M )
be an R-module. Let X be a set, and let Map(X,M) := Mor(Set)(X,M)
denote the set of all maps from X to M . For any r ∈ R and any pair of
maps ϕ,ψ ∈ Map(X,M) we define maps “point-wise” by

ϕ+pw ψ : X → M
x 7→ ϕ(x) +M ψ(x)

and
r ·pw ϕ : X → M

x 7→ r ·M ϕ(x).

Then the triple (Map(X,M),+pw, ·pw) is an R-module, and

Map(•,M) : (Set) → (R-Mod)

X 7→ Map(X,M)

f : X → Y 7→ f∗ : Map(Y,M)→ Map(X,M)

is a contravariant functor, where for a map f : X → Y of sets, and a map
ϕ ∈ Map(Y,M) holds f∗(ϕ) := ϕ ◦ f .

Proof. Proving that Map(X,M), together with point-wise defined composi-
tions, is an R-module is a standard exercise. Consider now a map f : X → Y
of sets. For any ϕ ∈ Map(Y,M) clearly holds f∗(ϕ) := ϕ ◦ f ∈ Map(X,M),
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so f∗ is well-defined as a map of sets. To show that f∗ is indeed defined
in the “right” category, we need to verify that it is a homomorphism of
R-modules.

To do this, let r ∈ R, and ϕ,ψ ∈ Map(Y,M). Then for all x ∈ X holds by
definition

f∗(ϕ+pw ψ)(x) = (ϕ+pw ψ) ◦ f(x) = (ϕ+pw ψ)(f(x))
= ϕ(f(x)) +M ψ(f(x)) = f∗(ϕ)(x) +M f∗(ψ)(x)
= (f∗(ϕ) +pw f

∗(ψ))(x),

and hence f∗(ϕ +pw ψ) = f∗(ϕ) +pw f
∗(ψ) as maps. An analogous com-

putation shows f∗(r ·pw ϕ) = r ·pw f∗(ϕ). Thus f∗ is a homomorphism of
R-modules.

We still need to verify that the assignment of morphisms through Map(•,M)
is functorial. Consider a pair of maps f : X → Y and g : Y → Z in (Set).
As in the case of the contravariant Mor-functor in example 2.18, one finds
the identity (g ◦ f)∗ = f∗ ◦ g∗. �

By composing the Map-functor from lemma 4.31 with the forgetful functor
F : (R-Mod) → (Set), we obtain a contravariant functor from the category
of R-modules to itself.

4.32 Definition. Let (M,+M , ·M ) be an R-module. The contravariant
Hom-functor associated to M is given by

Hom(•,M) : (R-Mod) → (R-Mod)

N 7→ HomR(N,M)

α : N → N ′ 7→ α∗ : HomR(N ′,M)→ HomR(N,M)

with α∗(ϕ) := ϕ ◦ α for all α ∈ HomR(N,N ′) and ϕ ∈ HomR(N ′,M).

4.33 Remark. Note that the Hom-functor is additive: for any pair of
homomorphisms α, β : N → N ′ of R-modules holds (α+pw β)∗ = α∗+pw β

∗.

A special case of the Hom-functor is obtained, when one considers in place
of the R-module M the module M := R itself.

4.34 Definition. Let (N,+N , ·N ) be an R-module. The dual module of
(N,+N , ·N ) is the R-module (HomR(N,R),+pw, ·pw). It is denoted by

N∗ := HomR(N,R).
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4.35 Examples. a) Consider (Z,+, ·) as Z-module. Let ϕ ∈ HomZ(Z,Z).
For any a ∈ Z holds ϕ(a) = a ·ϕ(1). Hence the homomorphism ϕ is uniquely
determined by its value on 1, which can be any element of Z. We thus obtain
an isomorphism of Z-modules

Z∗ ∼= Z.

b) Let n ∈ N>0 be fixed, and consider (Z/nZ,+, ·) as a Z-module. Let
ϕ ∈ HomZ(Z/nZ,Z), and let a ∈ Z/nZ denote the equivalence class of some
integer a ∈ Z modulo n. Then 0 = ϕ(0) = ϕ(n · a) = n ·ϕ(a), which implies
ϕ(a) = 0. So ϕ is the constant zero homomorphism, and hence

(Z/nZ)∗ = {0}.

c) Consider (Q,+, ·) as Z-module. We claim that for the dual module holds

Q∗ = {0}.

Indeed, assume that there is a homomorphism α ∈ HomZ(Q,Z) with α 6= 0.
Then there exists some a ∈ Q such that b := α(a) 6= 0. Since b ∈ Z r {0},
we can find an integer n ∈ Z, such that b

n 6= Z. For the rational number
a
n ∈ Q, we compute α( an) = n

nα( an) = 1
nα(nan ) = α(a)

n = b
n 6∈ Z, contradicting

the definition of α.

4.36 Remark. Dualizing R-modules defines a contravariant functor

∗ : (R-Mod) → (R-Mod)

(N,+N , ·N ) 7→ (N∗,+N∗ , ·N∗)
α : N → N ′ 7→ α∗ : N ′∗ → N∗

where the homomorphism α∗ is given on elements of the dual module ϕ ∈
HomR(N ′, R) by α∗(ϕ) := ϕ◦α ∈ HomR(N,R). Again, the dualizing functor
is additive: for any pair of homomorphisms α, β : N → N ′ of R-modules
holds (α+ β)∗ = α∗ + β∗.

Let us return to the general situation.

4.37 Proposition. Let (M,+M , ·M ) be an R-module. Let α : N → N ′ be
a homomorphism of R-modules, which is an epimorphism. Then the dual
homomorphism α∗ : HomR(N ′,M)→ HomR(N,M) is a monomorphism.
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Proof. Let β, β′ : L→ HomR(N,M) be two homomorphism of R-modules,
such that α∗ ◦ β = α∗ ◦ β′. We need to show the identity β = β′.

By assumption, for all ` ∈ L holds α∗ ◦ β(`) = α∗ ◦ β′(`) as an identity of
morphisms in HomR(N,M). By the definition of α∗, this is equivalent to
β(`) ◦α = β′(`) ◦α. Since α is an epimorphism, this implies β(`) = β′(`) for
all ` ∈ L. Thus β = β′. �

4.38 Remark. Note that in general the dual of proposition 4.37 is not
true. For example, consider the inclusion map ι : Z ↪→ Q, which is clearly
a monomorphism of Z-modules. By 4.35, we have for the dual modules
Z∗ ∼= Z and Q∗ = {0}. Hence the dual homomorphism ι∗ : Q∗ → Z∗ is not
an epimorphism.

In definition 3.28 we called a functor exact, if it maps kernels and cokernels to
kernels and cokernels again. In this terminology, proposition 4.37 translates
into the following corollary.

4.39 Corollary. Let (M,+M , ·M ) be an R-module. Then the contravari-
ant Hom-functor Hom(•,M) is left exact.

Proof. Note that in order to apply the definition of left-exactness, we
need to view Hom(•,M) as a (covariant) functor on the opposite category
(R-Mod)op. Thus we need to show that kernels in (R-Mod)op (i.e. cokernels
in (R-Mod)) get mapped to kernels in (R-Mod).

Let α : N → N ′ be a homomorphism of R-modules, with cokernel γ :
N ′ → Q. Up to isomorphism, the cokernel of α is given by the canonical
quotient homomorphism π : N ′ → N ′/im(α). Since π is an epimorphism,
its dual π∗ : HomR(N ′/im(α),M) → HomR(N ′,M) is a monomorphism
by proposition 4.37. Hence we may identify HomR(N ′/im(α),M) with its
image in HomR(N ′,M), i.e.

HomR(N ′/im(α),M) ∼= im(π∗)

= {ϕ ∈ HomR(N ′,M) : ∃ϕ ∈ HomR(N ′/im(α),M) s.th. ϕ = ϕ ◦ π}

as a submodule of HomR(N ′,M). For any ϕ ∈ HomR(N ′/im(α),M) we
clearly have α∗ϕ = ϕ ◦ π ◦ α = 0, so HomR(N ′/im(α),M) ⊆ ker(α∗). Con-
versely, let ϕ ∈ HomR(N ′,M) be such that ϕ ∈ ker(α∗). Then α∗ϕ = 0 as
a homomorphism N → M . Hence for all n ∈ N , we have ϕ ◦ α(n) = 0,
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which implies im(α) ⊆ ker(ϕ). By the universal property of the quo-
tient, there exists a factorization ϕ : N ′/im(α) → M such that ϕ =
ϕ ◦ π. Hence ϕ ∈ HomR(N ′/im(α),M). This establishes the equality
HomR(N ′/im(α),M) = ker(α∗). �

4.40 Definition. The bi-dual functor is the (covariant) functor given by

∗∗ : (R-Mod) → (R-Mod)

M 7→ M∗∗ := HomR(HomR(M,R))

α : M → N 7→ (α∗)∗ : M∗∗ → N∗∗
.

4.41 Remark. For any R-module (M,+M , ·M ), there exists a natural
homomorphism of R-modules given by

eM : M → M∗∗

m 7→ eM (m)

where for m ∈ M , the homomorphism em ∈ M∗∗ is the R-linear evaluation
map

eM (m) : M∗ = HomR(M,R) → R
f 7→ f(m).

In general, the homomorphisms eM are neither injective nor surjective.

It is not hard to verify that for the category C := (R-Mod) of R-modules,
the family e := {eM}M∈Ob(C) is a natural transformation e : id C ⇒ ∗∗.

4.4 Finitely generated and free modules

4.42 Definition. Let {Mλ}λ∈Λ be a family of R-modules, indexed by
some set Λ 6= ∅. We define a set∏

λ∈Λ

Mλ :=
{
{mλ}λ∈Λ : mλ ∈Mλ

}
.

For an element r ∈ R and a pair of families {mλ}λ∈Λ and {nλ}λ∈Λ, we define
a composition and an operation by

{mλ}λ∈Λ + {nλ}λ∈Λ := {mλ + nλ}λ∈Λ and r · {mλ}λ∈Λ := {r ·mλ}λ∈Λ.

In this way, the triple (
∏
λ∈ΛMλ,+, ·) becomes an R-module. It is called

the direct product of the family {Mλ}λ∈Λ. Moreover, by defining⊕
λ∈Λ

Mλ :=
{
{mλ}λ∈Λ ∈

∏
λ∈Λ

Mλ : mλ 6= 0 for only finitely many λ ∈ Λ
}
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one obtains a submodule (
⊕

λ∈ΛMλ,+, ·), which is called the direct sum of
the family {Mλ}λ∈Λ.

4.43 Remark. a) Clearly, if the set of indices Λ is finite, the notions of
direct product and direct sum coincide. The product of two R-modules M
and N is simply denoted by M ×N or M ⊕N , and the product of a finite
number n of copies of the same R-module M by Mn.

b) For any λ ∈ Λ, let iλ := Mλ →
⊕

λ∈ΛMλ denote the canonical inclu-
sion homomorphism, and pλ :

∏
λ∈ΛMλ → Mλ the canonical projection.

Moreover, let ιλ : {0} → Mλ denote the trivial inclusion homomorphism,
and τλ : Mλ → {0} the constant null homomorphism. Then one verifies
that (

∏
λ∈ΛMλ, {pλ}λ∈Λ) is a product of the family of morphisms {τλ}λ∈Λ

in the category (R-Mod) of R-modules. Analogously, (
⊕

λ∈ΛMλ, {iλ}λ∈Λ)
is a coproduct of the family {ιλ}λ∈Λ in (R-Mod). Compare example 1.41
above.

4.44 Definition. Let E be a non-empty set. The free R-module generated
by E is the direct sum of the constant family {R}e∈E . We will denote it by

R〈E〉 :=
⊕
e∈E

R.

For E = ∅, we define R〈∅〉 := {0} as the trivial module.

4.45 Remark. An alternative, and slightly abusive, notation for the free
R-module generated by E is

R〈E〉 =
⊕
e∈E

Re

Here, elements of R〈E〉 are thought of as so-called formal sums in the ele-
ments of E. By this one means the following.

Let ε ∈ R〈E〉. Instead of writing ε as a family ε = {re}e∈E , one uses the
notation ε =

∑
e∈E re · e. By definition, there exists a number n ∈ N , and

elements e1, . . . , en ∈ E, such that re = 0 if e 6∈ {e1, . . . , en}. Put ri := rei
for i = 1, . . . , n. Then one writes

ε := r1e1 + . . .+ rnen

and applies the usual rules for addition andR-module-multiplication to these
expressions. For the special case n = 0, where ε is constant the zero-family,
we write ε = 0. In particular, the elements e ∈ E are actually thought of as
elements e = 1 · e ∈ R〈E〉.
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4.46 Exercise. Show that as an R-module, R〈E〉 is isomorphic to the
submodule of Map(E,R), which is given by

Map⊕(E,R) := {f ∈ Map(E,R) : f(e) 6= 0 for only finitely many e ∈ E}.

4.47 Example. Let (K,+, ·) be a field, and let V be a finite-dimensional
vector space over K. Let E = {e1, . . . , en} be a basis of V . The free
K-module generated by the set E is K〈E〉 =

⊕n
i=1K = Kn, and the iso-

morphism V ∼= Kn determined by the basis E is usually written as an
identification

V =
n⊕
i=1

Kei.

4.48 Notation. Let (M,+, ·) be an R-module, and let E ⊆M be a subset.
The map

ΓE : R〈E〉 → M
{re}e∈E 7→

∑
e∈E re · e

is well-defined, since the sum in M is actually finite by the definition of
the free R-module generated by a set. Moreover, ΓE is a homomorphism of
R-modules.

4.49 Definition. Let (M,+, ·) be an R-module. A subset E ⊆M is called

a) a generating subset of M , if ΓE is surjective;
b) R-linearly independent, if ΓE is injective;
c) a basis of M , if ΓE is bijective.

4.50 Remark. Let (M,+, ·) be an R-module with M 6= {0}.
a) A subset E ⊆M is a generating subset of M if and only if for all m ∈M
there exists a natural number n ∈ N>0, elements r1, . . . , rn ∈ R and elements
e1, . . . , en ∈ E, such that m = r1e1 + . . .+ rnen.

b) A subset E ⊆M is R-linearly independent if and only if for any natural
number n ∈ N>0, any pairwise distinct elements e1, . . . , en ∈ E, and all
elements r1, . . . , rn ∈ R, the equality r1e1 + . . . + rnen = 0M implies r1 =
. . . = rn = 0R.

c) A subset E ⊆ M is a basis of M if and only if for all 0 6= m ∈ M there
exists a unique natural number n ∈ N, unique elements r1, . . . , rn ∈ R and
unique pairwise distinct elements e1, . . . , en ∈ E, such that m = r1e1 + . . .+
rnen.
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4.51 Examples. a) Let (K,+K , ·K) be a field. Then any K-vector space
(V,+, ·) has a basis.

b) The set of monomials E := {Xi : i ∈ N} is a basis of the R-module
(R[X],+, ·) of polynomials.

c) Consider (Q,+, ·) as a Z-module. Clearly, the set E := { 1
n : n ∈ N>0} is

a generating set. However, there exists no basis of (Q,+, ·).
Indeed, assume that there exists a basis E. It is easy to see that E must
contain more then one element to be a generating subset. So let p, q ∈ E be
two different elements. Let a, b, c, d ∈ Z be such that p = a

b and q = c
d . Then

(−cb) · q + (ad) · q = 0Q is a non-trivial Z-linear combination, contradicting
the injectivity of ΓE .

4.52 Definition. Let (M,+, ·) be an R-module. It is called

a) finitely generated, if there exists a generating set, which is finite.

b) free, if there exists a basis of (M,+, ·).

4.53 Lemma. Let (R,+R, ·R) be a commutative ring with multiplicative
identity element 1R 6= 0R. Let (M,+, ·) be an R-module, which is finitely
generated and free. Then there exists a basis of (M,+, ·) which is finite.
Any two bases of (M,+, ·) have the same cardinality.

Proof. Using some elements from ring theory the proof reduces the claims
of the lemma to the case of a vector space over a field, where the statements
are well-known. See for example [Lang] for details. �

4.54 Definition. Let (R,+R, ·R) be a commutative ring with multiplica-
tive identity element 1R 6= 0R. Let (M,+, ·) be an R-module, which is
finitely generated and free. Then the rank of (M,+, ·) over R is

rankR(M) := d,

where d is the cardinality of a basis of (M,+, ·). By some authors, this is
also called the dimension of (M,+, ·).

4.55 Examples. a) Any vector space (V,+, ·) over a field (K,+, ·) has a
basis. So any K-vector space is a free K-module. If V is finite dimensional,
then

dimK(V ) = rankK(V ).
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b) The ring of polynomials R[X1, . . . , Xn] has a basis E = {1, X,X2, . . .}.
It is a free R-module, but not finitely generated.

c) Consider the ring (Z,+, ·) as module over itself. Obviously, it is free and
of rank 1. The only possible bases are {1} and {−1}.
Let n ∈ N>0. The ideal (n) = nZ ⊆ Z is a submodule, which is again free
and of rank 1.

By remark 4.26, the quotient Z/nZ is a Z-module, too. It is obviously
finitely generated, since |Z/nZ| = n < ∞. However, Z/nZ is not a free
module. Indeed, suppose that E ⊆ Z/nZ is a basis. Since E is a generating
set, there must exist an element 0 6= e ∈ E, with a representative e ∈ Z. We
compute

n · e = ne = 0 = 0 · e,
contradicting the uniqueness of the representation of 0.

4.56 Exercise. Let A ⊆ M be a subset of an R-module (M,+, ·). We
define the span of A by

spanR(A) :=
⋂

U⊆M submodule with A⊆U
U.

It is the smallest submodule of M , which contains A. Let (N,+, ·) be a
submodule of (M,+, ·). Show that A is a generating subset of N if and only
if N = spanR(A).

4.57 Proposition. Let (M,+, ·) be an R-module. Then M is finitely gen-
erated, if and only if there exists a natural number n ∈ N>0 and a submodule
U ⊆ Rn, such that

M ∼= Rn/U.

Proof. The reverse implication is trivial. Let us assume that M is finitely
generated by a finite generating set E = {e1, . . . , en} ⊆M , with |E| = n > 0.
By definition, the homomorphism ΓE is surjective. Put U := ker(ΓE). For
the underlying groups, we have an isomorphism of groups

M = im(ΓE) ∼= Rn/ ker(ΓE) = Rn/U.

The isomorphism γ : Rn/U → M is given on v ∈ Rn/U by γ(v) = ΓE(v).
In particular, γ is a homomorphism of R-modules.

Let r ∈ R. We compute

γ−1(r · v) = γ−1(r · γ(γ−1(v))) = γ−1(γ(r · γ−1(v))) = r · γ−1(v).

This shows that γ−1 is a homomorphism of R-modules, too. Therefore γ is
an isomorphism of R-modules. �

63



J. Zintl REFERENCES

References

[Bou] Bourbaki N., Algebra I, Chapters 1-3, Springer (1989)

[Eis] Eisenbud D., Commutative Algebra with a View Toward Algebraic
Geometry, Springer (1995)

[Gre] Greub W., Multilinear Algebra, Springer Universitext (1978)

[Lang] Lang S., Algebra, Addison-Wesley (1984)

[Mac] MacLane S., Categories for the Working Mathematician, Springer
GTM 5 (1971)

[Sch] Schubert, H., Kategorien, Vol. I+II, Heidelberger Taschenbücher
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