Srobabilistic Models of
Cognition:

__(Generative models |

Lucca Hellriegel

Table of Contents

e Chapter Content
® Exercises

® (Questions and Discussion

o

Chapter Content

Generative Model

A Generative Model describes a process that generates
data, which hopefully encodes knowledge about the causal
structure of the world

Example: Plinko Machine

The Plinko machine is a working model for physical
processes (e.g. leafs falling from a tree)

‘—> Working Model 4—\

can be used captures some
for simulation structure of the world
in useful way

Plinko Machine Demo

Simulate outcomes (data) many times, shape

emerges

e Reason about ‘shape of expected outcomes’ (with
probabilistic concepts)

e How to formally describe simulations/working

models?

Building Generative Models

... with programming languages (WebPPL).

WebPPL allows us to describe probabilistic computation
with stochastic operations.

o

Examples with Flip

Flip

e Sample random choice (true/false) with flip()
® Get visualization of (uniform) distribution with
viz(repeat(1000,flip))

Flip Sum

® More complex process, adds 0 and 1s:
o var sumfFlips = function() {

return flip() + flip() + flip()
i
® viz(repeat(100, sumFlips))

Flipping Coins Bend

® var makeCoin = function(weight) {
return function() { flio(weight) ? 'h': 't } },

Flipping Coins Bend

e var bend = function(coin) {
return function() {
(coin() =="'h") ?
makeCoin(0.7)() : makeCoin(0.1)()
}
}

Flipping Coins Bend

var fairCoin = makeCoin(0.5)
var bentCoin = bend(fairCoin)
viz(repeat(100,bentCoin))

Bending a fairCoin randomly in one direction

Flipping Coins Repeat Sum

var coin = makeCoin(0.8)
® var data = repeat(1000, function()

{ sum(repeat(10, coin)) })
e viz(data, {xLabel: '# heads'})
® Around 80% of coin flips are true, sum is most often 8
Distribution as expected

Causal Models in Medical Diagnosis

var lungCancer = flip(0.01);
var cold = flip(0.2);
var cough = cold || lungCancer;

cough;

Advanced Causal Models in Medical
Diagnosis

® var cough = cold || lungCancer;

® var cough = ((cold && flip(0.5)) ||
(lungCancer && flip(0.3)) | |
(TB && flip(0.7)) ||
(other && flip(0.01)))

® Many illnesses and symptoms

o

Probability Concepts and
WebPPL

Probability

e Predict outcome value of [flip(), flip()]?

e A probability isa number between 0 and 1, degree of
belief of specific outcomes (e.g. [true, false])

® The probability of an event A (e.g. [true,false]) is
usually written as: P(A)

Probability Distribution

A probability distribution is the probability of each
possible outcome of an event

® |[nspect it by sampling

® var randomPair = function () { return [flip(), flin()]; },
viz.hist(repeat(1000, randomPair), 'return values');

Distributions in WebPPL

The Bernoulli distribution is a coin flip with probability
p for heads

e var b =Bernoulli({p: 0.5})

e sample(b)

viz(b)

Distributions in WebPPL

var g = Gaussian({mu: 0, sigma: 1})

sample(g)
gaussian(0,1))

var foo = function(){return gaussian(0,1)*gaussian(0,1)}

Constructing marginal distributions: Infer

var foo = function(){gaussian(0,1)*gaussian(0,1)}
Make distribution explicit?

var d = Infer({method: 'forward’, samples: 1000}, foo)
sample(d)

viz(d)

Constructing marginal distributions: Infer

e Two views: Sampling Perspective and Distributional
Perspective

e With suitable restrictions:
o Any WebPPL program represents a distribution
o Any distribution can be represented by WebPPL

program

e With Infer: Build distribution from complicated
programs

e But also: derive distributions with the “rules of
probability”, for simple programs at least

o

he Rules of Probability

Product Rule

var A = flip(),
var B = flip(),
var C = [A, B,

4 cases, so probability for each case is 0.25
How to calculate this?

o Using the product rule of probabilities

Product Rule

var A = flip(),
var B = flip();
var C = [A, B,

Product Rule: The probability of two random choices is

the product of their individual probabilities.

Product Rule

var A = flip(),
var B = flip();
var C = [A, B,

Using the Product Rule: P(C=[true,true])=0.5%0.5=0.25
Joint Probability: The probability of several random

choices together, written as P(A,B)

Product Rule

var A = flip(),
var B=flip(A ?0.3:0.7);
Dependent Random Choice!

How to compute the probability?

Product Rule

® [n general, the joint probability of sequential events A
(first) and B (second) is:

o P(A,B)=P(A)*P(B|A)
o P(B|A)is “B given A”

e Independent Choice: P(A,B) = P(A)*P(B|A)=P(A)*P(B)

Product Rule

var A = flip(),
var B=flip(A ?0.3:0.7);
Dependent Random Choice!
Calculation of P(B) needs Sum Rule!

Examples in Exercises

Sum Rule

var C= flip() | | flip()

® Product Rule? Sequence?

® C(Cases: C==true, if [true,true] or [true,false] or
[false,true]

Calculate with Sum Rule

O

Sum Rule

e Sum Rule:

The sum of probabilities of alternative sequences of
choices that lead to the same return value, is the
probability of this return value

P(A) =\sum_{B} P(A,B)

Event B is sequence, event A is endresult

Sum Rule

var C= flip() | | flip()

® C(Cases: C==true, if [true,true] or [true,false] or
[false,true]

e C(Casesis equal to sequences that lead to return value
true

P(C) =\sum_{B} P(C,B) =0.25+0.25 + 0.25=0.75

Sum Rule and Product Rule

e Distribution View: The final distribution is the marginal

distribution on final values

Sum Rule and Product Rule

e Distribution View: The final distribution is the marginal
distribution on final values

e Sampling View: Summing up the result values of the
sampled random sequences which may include joint
and dependent probabilities, ignoring values in

between

Sum Rule and Product Rule

e Distribution View: The final distribution is the marginal
distribution on final values

e Sampling View: Summing up the result values of the
sampled random sequences which may include joint
and dependent probabilities, ignoring values in

between

o

Advanced WebPPL

Stochastic recursion

var geometric = function (p) {
flip(p) ? 0 : 1 + geometric(p);
;

e Adding a random number of 1s

Stop has to be reached with 100% probability

Persistent Randomness: mem

var eyeColor = function (person) {
return uniformDraw(['blue’, 'green’, 'brown']); };

e eyeColor('bob');

e eyeColor('bob');

Bob’s eye color can change each time we ask about it!

Persistent Randomness: mem

Solution: eye color is random, but persistent

® mem takes a procedure and produces a memoized
version

® Memoized stochastic procedure: sample a random
value the first time, then always return that same value

Persistent Randomness: mem

® var eyeColor = mem(function (person) {
return uniformDraw(['blue’, ‘green’, 'brown’]);

1

Persistent Randomness: mem

Represent/reason about an unbounded set of
properties of an unbounded set of objects.
flipAlot maps from an integer to coin flip
Represent nth flip of a coin, without flipping n times
var flipAlot = mem(function (n) {return flip() });
[flipAlot(1), flipAlot(12), flipAlot(47), flipAlot(1548)]

Example: Intuitive physics

Example: Intuitive physics

Human Intuition: Generative Model that captures key

aspects of physics
e Example: Approximate Newtonian mechanics to
imagine future state of rigid bodies

Example: Intuitive physics

First Demo of Newtonian Physics Simulator: Initial
State is presented and then guessing next state

e |sthe implementation of the next state(s) congruent

with our intuitive model?

Example: Intuitive physics

e Second Demo: Human Intuition about the stability of
block towers, first judge whether you think the tower is
stable, then simulate to find out if it is

O

O
O
O

Example: Intuitive physics

® Third Demo: Hamrick et al. think our intuitions of

stability are really stability given noise

Base Worlds (stable, almostUnstable, unstable)
Noisify

Idea: Still same intuitive assessment as base state
Distribution shows what the model “thinks”

Summary of Chapter Content

Use Generative Models to describe knowledge about processes in the real world including uncertainty
e Build/simulate Generative Models with WebPPL
e WebPPL offers computation of probability concepts like the coin flip

® Main Viewpoints: Sampling and Distribution
e Important WebPPL computations:
o Flip and other Distributions, Infer, mem
e Important probability concepts:
o Distribution, Probability, Probability Distribution, Joint Probability, Dependent Probability
e Important rules for calculation and deriving distributions:
o Product Rule and Sum Rule

o

Exercises

Exercise 1 a)

o flip() ?flin(.7) : flip(.1)=>A?B:C
® Product Rule (Independent!):

o P(A,B)=0.5*0.7=0.35

o P(A=false, C) =0.5*0.1 =0.05
e Sum Rule:

o Disend product

o P(D)=P(A,B)+ P(A=false, C) =0.4

Exercise 1 a)

e flip(flip() ?.7:.1)=>P(A|B)=0.7, P(A|B=false) =0.1
® Product Rule (Not independent!)

o P(A,B)=P(B)*P(A|B) =0.5* 0.7 =0.35

o P(A,B=false) = P(B=false)*P(A|B=false) =0.5 * 0.1 = 0.05
e Sum Rule:
o P(A)=P(A,B)+ P(A,B=false) =0.4

Exercise 1 a)

o flip(0.4)=>P(A) = 0.4

Exercise 1 b)

® viz(repeat(1000,function() {flip() ? flip(.7) : flin(.1)}))
® viz(repeat(1000,function() {flip(flip() ?.7 : .1)}))
e viz(repeat(1000,function() {flin(0.4)}))

Exercise 1 ¢)

® viz(repeat(1000,function() {(flin(0.6)&&flip(0.6))[| flin(0.04)}))

Exercise 1 ¢)

® viz(repeat(1000,function() {(flin(0.6)&&flip(0.6))[| flin(0.04)}))
o P(A,B)=0.6*0.6 =0.36

Exercise 1 ¢)

® viz(repeat(1000,function() {(flin(0.6)&&flip(0.6))[| flin(0.04)}))
o P(A,B)=0.6*0.6 =0.36
o P(C)=0.04

Exercise 1 ¢)

® viz(repeat(1000,function() {(flin(0.6)&&flip(0.6))[| flin(0.04)}))
o P(A,B)=0.6*0.6 =0.36
o P(C)=0.04
e Sum Rule (Technically would have to combine A,B,C to one event
first):
o Dis the final result
o P(D)=0.36+0.04 = 0.4

Exercise 2
a)

Explain why (in terms of the evaluation process) these two programs give different
answers (i.e. have different distributions on return values).

var foo = flip();
display([foo, foo, fool); —

run

var foo = function() {return flip()};
display([foo(), foo(), foo()1);

Exercise 2 b)

e var foo = mem(function() {return (flip())}),

Exercise 2 ¢)

e var foo = mem(function(x) {return (flip(x))});
e display([foo(0), foo(0), foo(1)]),

Exercise 3
a)

Which of these programs would be more likely to generate the following proportions for
100 values of C? Justify your response.

frequency

Exercise 3 a)

Answer: B
P(A)=0.9
P(B) =P(A) *0.9=0,81

P(C) =P(B) *0.9=0.729

Exercise 3 b)

Answer: Yes, even better
varC=D?A&&B:A || B;

P(A&&B)=0.5*0.9 = 0.45

P(A&&B,D)=0.45*0.5=0.225

P(A]|B)=
P(A,B)+P(A=false,B)+P(A,B=false)=0.5%0.9+0.5*0.9+0.5*0.1=0.95
P(A||B,D)=0.95*%0.5=0.475

P(C) = P(A&&B,D) + P(A| |B,D) =0.225 + 0.475=0.7

Exercise 4 a)

P(allergies) = 0.3, P(cold) = 0.2
e P(sneeze) = P(allergies, cold) + P(allergies, cold=false) +
P(allergies=false, cold)

=0.2*0.3+0.3*0.2 + 0.7*0.2

=0.06 +0.24 +0.14

=0.44
® P(sneeze, fever) = P(sneeze) - P(allergies, cold=false) = 0.44 - 0.24
=0.2

Exercise 4 b)

e viz.hist(Infer({method: "forward", samples: 1000}, function() {
var allergies = flip(0.3);
var cold = flip(0.2);
var sneeze = cold [[allergies;
var fever = cold;
return [sneeze, fever];

)

Exercise 4 ¢)

® var fever = function(person) {return cold(person)}
® viz.hist(Infer({method: "forward", samples: 1000}, function() {
return [sneeze('bob’),fever('bob’)]}))

Exercise 4 ¢)

® Fix with mem
e var allergies = mem(function(person) {return flip(.3)});

e var cold = mem(function(person) {return flip(.2)});

Exercise 5

® var makeCoin = function(weight) { return function() { return
flio(weight) ? 'h': 't" }}
® Bend returns a function that samples a 0.7 or 0.1 coin based on a
coin-flip:
o var bend = function(coin) {
return function() {
return coin() == 'h' ? makeCoin(.7)() : makeCoin(.1)()

#

Exercise 5 a)

® fairCoin() =="'h' ? makeCoin(.7)() : makeCoin(.1)()
® First Product Rule, then Sum Rule:
o P(bentCoin)=0.5*0.7+0.5*0.1=0.4

Exercise 5 a)

® Check your answer using infer:
o viz.hist(Infer({method: "forward", samples: 1000}, bentCoin))

Exercise 6 a)

® Product Rule:
o P(geom=5)=0.5*0.5*0.5*0.5*%0.5 =0.03125

Exercise 6 b)

® Check your answer by using Infer
o viz.hist(Infer({method: "forward", samples: 1000}, function() {
return geometric()==5}))

Exercise /7 a)

e vara=flip(0.8)//0.4 + 0.4
o varb=flip(a?0.5:0.3) //0.4/0.8=0.5, 0.06/0.2=0.3

Exercise /7 b)

e viz.hist(Infer({method: "forward", samples: 1000}, function() {
var a = flip(0.8) //0.4 + 0.4

var b = flip(a ? 0.5 : 0.3) // 0.4/0.8=0.5, 0.06/0.2=0.3

return [a,b]}))

O

Exercise 8 a)

e (Qualitative change: Frequency of heads is higher than would be

expected from just the coin

Reason: More likely to get two tails in the successful cases,
example with 0.7 coin

P(2Heads)=0.7*0.7 = 0.49, P(2Tails)= 0.3*0.3 = 0.09
0.49/0.58 = 0.8448

m Asseen in histogram, more probability in one coin toss
leads to even higher probability in two coin tosses

Exercise 8 b)

e 0.5 would lead to equal frequency

