Probabilistic Models of Cognition:
 Generative models

Lucca Hellriegel

Table of Contents

- Chapter Content
- Exercises
- Questions and Discussion

Chapter Content

Generative Model

A Generative Model describes a process that generates data, which hopefully encodes knowledge about the causal structure of the world

Example: Plinko Machine

The Plinko machine is a working model for physical processes (e.g. leafs falling from a tree)

\longmapsto Working Model \longleftarrow

can be used for simulation
captures some structure of the world in useful way

Plinko Machine Demo

- Simulate outcomes (data) many times, shape emerges
- Reason about 'shape of expected outcomes' (with probabilistic concepts)
- How to formally describe simulations/working models?

Building Generative Models

... with programming languages (WebPPL).

WebPPL allows us to describe probabilistic computation with stochastic operations.

Examples with Flip

Flip

- Sample random choice (true/false) with flip()
- Get visualization of (uniform) distribution with viz(repeat(1000,flip))

Flip Sum

- More complex process, adds 0 and 1s:
- var sumFlips = function() \{ return flip() + flip() + flip() \}
- viz(repeat(100, sumFlips))

Flipping Coins Bend

- var makeCoin = function(weight) \{ return function() \{ flip(weight) ? 'h' : 't' \} \};

Flipping Coins Bend

- var bend = function(coin) \{ return function() \{ (coin() == 'h') ?
makeCoin(0.7)() : makeCoin(0.1)()
\}
\}

Flipping Coins Bend

- varfairCoin = makeCoin(0.5)
- var bentCoin = bend(fairCoin)
- viz(repeat(100,bentCoin))
- Bending a fairCoin randomly in one direction

Flipping Coins Repeat Sum

- var coin = makeCoin(0.8)
- var data = repeat(1000, function() \{ sum(repeat(10, coin)) \})
- viz(data, \{xLabel: '\# heads'\})
- Around 80% of coin flips are true, sum is most often 8
- Distribution as expected

Causal Models in Medical Diagnosis

- var lungCancer = flip(0.01);
- var cold = flip(0.2);
- var cough = cold || lungCancer;
- cough;

Advanced Causal Models in Medical Diagnosis

- var cough = cold || lungCancer;
- var cough = ((cold \&\& flip(0.5)) |/
(lungCancer \&\& flip(0.3)) ||
(TB \&\& flip(0.7)) | |
(other \&\& flip(0.01)))
- Many illnesses and symptoms

Probability Concepts and WebPPL

Probability

- Predict outcome value of [flip(), flip()]?
- A probability is a number between 0 and 1 , degree of belief of specific outcomes (e.g. [true, false])
- The probability of an event A (e.g. [true,false]) is usually written as: $P(A)$

Probability Distribution

- A probability distribution is the probability of each possible outcome of an event
- Inspect it by sampling
- var randomPair = function () \{ return [flip(), flip()]; \};
- viz.hist(repeat(1000, randomPair), 'return values');

Distributions in WebPPL

- The Bernoulli distribution is a coin flip with probability p for heads
- var $b=$ Bernoulli(\{p: 0.5\})
- sample(b)
- $\operatorname{viz}(b)$

Distributions in WebPPL

- $\operatorname{var} g=$ Gaussian(\{mu: 0, sigma: 1\})
- sample(g)
- gaussian(0,1))
- varfoo = function()\{return gaussian(0,1)*gaussian(0,1)\}

Constructing marginal distributions: Infer

- varfoo = function() \{gaussian(0,1)*gaussian(0,1)\}
- Make distribution explicit?

- sample(d)
- $v i z(d)$

Constructing marginal distributions: Infer

- Two views: Sampling Perspective and Distributional Perspective
- With suitable restrictions:
- Any WebPPL program represents a distribution
- Any distribution can be represented by WebPPL program
- With Infer: Build distribution from complicated programs
- But also: derive distributions with the "rules of probability", for simple programs at least

The Rules of Probability

Product Rule

- $\operatorname{var} A=$ flip();
- var $B=$ flip();
- $\operatorname{var} C=[A, B]$;
- 4 cases, so probability for each case is 0.25
- How to calculate this?
- Using the product rule of probabilities

Product Rule

- $\operatorname{var} A=$ flip();
- var $B=$ flip();
- $\operatorname{var} C=[A, B]$;
- Product Rule: The probability of two random choices is the product of their individual probabilities.

Product Rule

- var A = flip();
- var $B=$ flip();
- $\operatorname{var} C=[A, B]$;
- Using the Product Rule: $\mathrm{P}(\mathrm{C}=[$ true,true $])=0.5^{*} 0.5=0.25$
- Joint Probability: The probability of several random choices together, written as $P(A, B)$

Product Rule

- $\operatorname{var} A=$ flip();
- var $B=$ flip(A ? $0.3: 0.7$);
- Dependent Random Choice!
- How to compute the probability?

Product Rule

- In general, the joint probability of sequential events A (first) and B (second) is:
- $P(A, B)=P(A) * P(B \mid A)$
- $P(B \mid A)$ is " B given A "
- Independent Choice: $P(A, B)=P(A) * P(B \mid A)=P(A) * P(B)$

Product Rule

- $\operatorname{var} A=$ flip();
- var $B=$ flip(A ? $0.3: 0.7$);
- Dependent Random Choice!
- Calculation of $P(B)$ needs Sum Rule!
- Examples in Exercises

Sum Rule

- $\operatorname{var} C=$ flip() || flip()
- Product Rule? Sequence?
- Cases: $\mathrm{C}==$ true, if [true,true] or [true,false] or [false,true]
- Calculate with Sum Rule

Sum Rule

- Sum Rule:
- The sum of probabilities of alternative sequences of choices that lead to the same return value, is the probability of this return value
- $P(A)=\backslash$ sum_ $\{B\} P(A, B)$
- Event B is sequence, event A is endresult

Sum Rule

- $\operatorname{var} C=$ flip() || flip()
- Cases: $\mathrm{C}==$ true, if [true,true] or [true,false] or [false,true]
- Cases is equal to sequences that lead to return value true
- $P(C)=\backslash$ sum_ $\{B\} P(C, B)=0.25+0.25+0.25=0.75$

Sum Rule and Product Rule

- Distribution View: The final distribution is the marginal distribution on final values

Sum Rule and Product Rule

- Distribution View: The final distribution is the marginal distribution on final values
- Sampling View: Summing up the result values of the sampled random sequences which may include joint and dependent probabilities, ignoring values in between

Sum Rule and Product Rule

- Distribution View: The final distribution is the marginal distribution on final values
- Sampling View: Summing up the result values of the sampled random sequences which may include joint and dependent probabilities, ignoring values in between

Advanced WebPPL

Stochastic recursion

- var geometric $=$ function $(p)\{$
flip(p) ? 0:1 + geometric(p);
\};
- Adding a random number of 1 s
- Stop has to be reached with 100% probability

Persistent Randomness: mem

- var eyeColor = function (person) \{ return uniformDraw(['blue', 'green', 'brown']); \};
- eyeColor('bob');
- eyeColor('bob');
- Bob's eye color can change each time we ask about it!

Persistent Randomness: mem

- Solution: eye color is random, but persistent
- mem takes a procedure and produces a memoized version
- Memoized stochastic procedure: sample a random value the first time, then always return that same value

Persistent Randomness: mem

- var eyeColor = mem(function (person) \{ return uniformDraw(['blue', 'green', 'brown']); \});

Persistent Randomness: mem

- Represent/reason about an unbounded set of properties of an unbounded set of objects.
- flipAlot maps from an integer to coin flip
- Represent nth flip of a coin, without flipping n times
- var flipAlot = mem(function (n) \{return flip() \});
- [flipAlot(1), flipAlot(12), flipAlot(47), flipAlot(1548)]

Example: Intuitive physics

Example: Intuitive physics

- Human Intuition: Generative Model that captures key aspects of physics
- Example: Approximate Newtonian mechanics to imagine future state of rigid bodies

Example: Intuitive physics

- First Demo of Newtonian Physics Simulator: Initial State is presented and then guessing next state
- Is the implementation of the next state(s) congruent with our intuitive model?

Example: Intuitive physics

- Second Demo: Human Intuition about the stability of block towers, first judge whether you think the tower is stable, then simulate to find out if it is

Example: Intuitive physics

- Third Demo: Hamrick et al. think our intuitions of stability are really stability given noise
- Base Worlds (stable, almostUnstable, unstable)
- Noisify
- Idea: Still same intuitive assessment as base state
- Distribution shows what the model "thinks"

Summary of Chapter Content

- Use Generative Models to describe knowledge about processes in the real world including uncertainty
- Build/simulate Generative Models with WebPPL
- WebPPL offers computation of probability concepts like the coin flip
- Main Viewpoints: Sampling and Distribution
- Important WebPPL computations:
- Flip and other Distributions, Infer, mem
- Important probability concepts:
- Distribution, Probability, Probability Distribution, Joint Probability, Dependent Probability
- Important rules for calculation and deriving distributions:
- Product Rule and Sum Rule

Exercises

Exercise 1 a)

- flip() ? flip(.7) : flip(.1) => A ? B : C
- Product Rule (Independent!):
- $P(A, B)=0.5$ * $0.7=0.35$
- $P(A=$ false, $C)=0.5^{*} 0.1=0.05$
- Sum Rule:
- D is end product
- $P(D)=P(A, B)+P(A=$ false,$C)=0.4$

Exercise 1 a)

- flip(flip() ? . 7 : .1) $=>\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0.7, \mathrm{P}(\mathrm{A} \mid \mathrm{B}=$ false $)=0.1$
- Product Rule (Not independent!)
- $P(A, B)=P(B) * P(A \mid B)=0.5 * 0.7=0.35$
- $P(A, B=$ false $)=P(B=$ false $) * P(A \mid B=$ false $)=0.5 * 0.1=0.05$
- Sum Rule:
- $P(A)=P(A, B)+P(A, B=$ false $)=0.4$

Exercise 1 a)

- flip(0.4) $=>\mathrm{P}(\mathrm{A})=0.4$

Exercise 1 b)

- viz(repeat(1000,function() \{flip() ? flip(.7) : flip(.1)\}))
- viz(repeat(1000,function() \{flip(flip() ? .7: :1)\}))
- viz(repeat(1000,function() \{flip(0.4)\}))

Exercise 1 c)

- viz(repeat(1000,function() \{(flip(0.6)\&\&flip(0.6))| |flip(0.04)\}))

Exercise 1 c)

- viz(repeat(1000,function() \{(flip(0.6)\&\&flip(0.6))| |flip(0.04)\}))

$$
\text { - } P(A, B)=0.6^{*} 0.6=0.36
$$

Exercise 1 c)

- viz(repeat(1000,function() \{(flip(0.6)\&\&flip(0.6))| |flip(0.04)\}))
- $P(A, B)=0.6^{*} 0.6=0.36$
- $P(C)=0.04$

Exercise 1 c)

- viz(repeat(1000,function() \{(flip(0.6)\&\&flip(0.6))| |flip(0.04)\}))
- $P(A, B)=0.6^{*} 0.6=0.36$
- $P(C)=0.04$
- Sum Rule (Technically would have to combine A, B, C to one event first):
- D is the final result
- $P(D)=0.36+0.04=0.4$

Exercise 2

a)

Explain why (in terms of the evaluation process) these two programs give different answers (i.e. have different distributions on return values).

```
var foo = flip();
display([foo, foo, foo]);
    Just one execution of flip
```

 run
    ```
var foo = function() {return flip()};
display([foo(), foo(), foo()]);
```

 run

Exercise 2 b)

- var foo = mem(function() \{return (flip())\});

Exercise 2 c)

- $\operatorname{var} f o o=\operatorname{mem}(f u n c t i o n(x)\{$ return (flip(x))\});
- display([foo(0), foo(0), foo(1)]);

Exercise 3

a)

Which of these programs would be more likely to generate the following proportions for 100 values of C? Justify your response.

Exercise 3 a)

- Answer: B
- $P(A)=0.9$
- $P(B)=P(A) * 0.9=0,81$
- $P(C)=P(B) * 0.9=0.729$

Exercise 3 b)

- Answer: Yes, even better
- $\operatorname{var} C=D$? A \&\& B : A ||B;
- $P(A \& \& B)=0.5^{*} 0.9=0.45$
- $P(A \& \& B, D)=0.45 * 0.5=0.225$
- $P(A|\mid B)=$
$P(A, B)+P(A=$ false,$B)+P(A, B=$ false $)=0.5^{*} 0.9+0.5^{*} 0.9+0.5^{*} 0.1=0.95$
- $P\left(A|\mid B, D)=0.95^{*} 0.5=0.475\right.$
- $P(C)=P(A \& \& B, D)+P(A| | B, D)=0.225+0.475=0.7$

Exercise 4 a)

- P (allergies) $=0.3, \mathrm{P}($ cold $)=0.2$
- $P($ sneeze $)=P($ allergies, cold $)+P($ allergies, cold=false $)+$ $P($ allergies=false, cold)

$$
\begin{aligned}
& =0.2 * 0.3+0.3 * 0.2+0.7 * 0.2 \\
& =0.06+0.24+0.14 \\
& =0.44
\end{aligned}
$$

- $P($ sneeze, fever $)=P($ sneeze $)-P($ allergies, cold=false $)=0.44-0.24$
$=0.2$

Exercise 4 b)

- viz.hist(Infer(\{method: "forward", samples: 1000\}, function() \{ var allergies = flip(0.3);
var cold = flip(0.2);
var sneeze = cold || allergies;
var fever = cold;
return [sneeze, fever];
\}))

Exercise 4 c)

- var fever = function(person) \{return cold(person)\}
- viz.hist(Infer(\{method: "forward", samples: 1000\}, function() \{ return [sneeze('bob'),fever('bob')]\}))

Exercise 4 c)

- Fix with mem
- var allergies = mem(function(person) \{return flip(.3)\});
- var cold = mem(function(person) \{return flip(.2)\});

Exercise 5

- var makeCoin = function(weight) \{ return function() \{ return flip(weight) ? ' h ' : 't' \}\}
- Bend returns a function that samples a 0.7 or 0.1 coin based on a coin-flip:
- var bend = function(coin) \{ return function() \{
return coin() == 'h' ? makeCoin(.7)() : makeCoin(.1)() \}\}

Exercise 5 a)

- fairCoin() $==$ ' h ' ? makeCoin(.7)() : makeCoin(.1)()
- First Product Rule, then Sum Rule:
- $P($ bentCoin $)=0.5^{*} 0.7+0.5^{*} 0.1=0.4$

Exercise 5 a)

- Check your answer using infer:
- viz.hist(Infer(\{method: "forward", samples: 1000\}, bentCoin))

Exercise 6 a)

- Product Rule:
- $\quad P($ geom $=5)=0.5 * 0.5 * 0.5 * 0.5 * 0.5=0.03125$

Exercise 6 b)

- Check your answer by using Infer
- viz.hist(Infer(\{method: "forward", samples: 1000\}, function() \{ return geometric()==5\}))

Exercise 7 a)

- $\operatorname{var} a=$ flip(0.8) $/ / 0.4+0.4$
- var $b=$ flip(a ? $0.5: 0.3$) // 0.4/0.8=0.5, 0.06/0.2=0.3

Exercise 7 b)

- viz.hist(Infer(\{method: "forward", samples: 1000\}, function() \{ var $a=$ flip(0.8) //0.4 + 0.4
var $b=$ flip(a ? $0.5: 0.3$) // 0.4/0.8=0.5, 0.06/0.2=0.3 return $[a, b]\})$)

Exercise 8 a)

- Qualitative change: Frequency of heads is higher than would be expected from just the coin
- Reason: More likely to get two tails in the successful cases , example with 0.7 coin
- $P(2$ Heads $)=0.7^{*} 0.7=0.49, P(2$ Tails $)=0.3^{*} 0.3=0.09$
- $0.49 / 0.58=0.8448$
- As seen in histogram, more probability in one coin toss leads to even higher probability in two coin tosses

Exercise 8 b)

- 0.5 would lead to equal frequency

