
Introduction	to	Software	Technology	
5.	Design	Patterns	

Klaus	Ostermann	

Einführung	in	die	Softwaretechnik	1	

Topics	of	this	Lecture	

Einführung	in	die	Softwaretechnik	2	

}  Design	Patterns	
}  Template	
}  Strategy		
}  Bridge	
}  Decorator	

}  These	design	patterns	are	less	general	than	the	GRASP	
patterns	
}  They	focus	on	specific	design	problems	

}  These	are	some	of	the	most	common	and	most	
important	classical	design	patterns	in	OO	design	

Template	Method	Pattern	

Einführung	in	die	Softwaretechnik	3	

}  The	goal	is	to	separate...	
}  policies	from	detailed	mechanisms.		
}  invariant	and	variant	parts.	

}  Abstract	classes...	
}  define	interfaces.		
}  implement	high-level	policies.		

}  Control	sub-class	extensions.		
}  Avoid	code	duplication.	
}  The	Template	Method	Pattern	is	at	the	core	of	the	design	
of	object-oriented	frameworks.	

Using the Template Method Pattern for Bubble-Sort

Einführung	in	die	Softwaretechnik	4	

public abstract class BubbleSorter{
 protected int length = 0;
 protected void sort() {
 if(length <= 1) return;
 for(int nextToLast= length-2;
 nextToLast>= 0; nextToLast--)
 for(int index = 0;
 index <= nextToLast; index++)
 if(outOfOrder(index)) swap(index);
 }
 protected abstract void swap(int index);
 protected abstract boolean outOfOrder(int index);

}

IntBubbleSorter	

Einführung	in	die	Softwaretechnik	5	

public class IntBubbleSorter extends BubbleSorter{
 private int[] array = null;
 public void sort(int[] theArray) {
 array = theArray;
 length = array.length;
 super.sort();
 }
 protected void swap(int index) {
 int temp = array[index];
 array[index] = array[index+ 1];
 array[index+1] = temp;
 }
 protected boolean outOfOrder(int index) {
 return(array[index] > array[index+ 1]);
 }

}

Discussion	

Einführung	in	die	Softwaretechnik	6	

Discussion	

Einführung	in	die	Softwaretechnik	7	

}  Template	method	forces	detailed	implementations	to	
extend	the	template	class.	

}  Detailed	implementation	depend	on	the	template.	
}  Cannot	re-use	detailed	implementations‘	functionality.	
(E.g.,	swap	and	out-of-order	are	generally	useful.)	

}  If	we	want	to	re-use	the	handling	of	integer	arrays	with	
other	sorting	strategies	we	must	remove	the	dependency	
}  this	leads	us	to	the	Strategy	Pattern.	
	

Strategy	Pattern	

Einführung	in	die	Softwaretechnik	8	

}  Intent	
}  Define	a	family	of	algorithms,	encapsulate	each	one,	and	
make	them	interchangeable.	Strategy	lets	the	algorithm	vary	
independently	from	clients	that	use	it.	

}  Comparison	With	Template	
}  Using	the	strategy	pattern,	both	-	the	template	and	the	
detailed	implementations	-	depend	on	abstractions.	

}  Basic	Structure	

Strategy	Pattern:	Example	

Einführung	in	die	Softwaretechnik	9	

Strategy:	General	Structure	

Einführung	in	die	Softwaretechnik	10	

Define	a	family	of	algorithms,	encapsulate	each	one,	and	
make	them	interchangeable	

Strategy	Pattern:	Discussion	

Einführung	in	die	Softwaretechnik	11	

}  Use	if	many	related	classes	differ	only	in	their	behavior	
rather	than	implementing	different	related	abstractions.	
}  Strategies	allow	to	configure	a	class	with	one	of	many	
behaviors.	

}  Use	if	you	need	different	variants	of	an	algorithm.	
}  Strategies	can	be	used	when	variants	of	algorithms	are	
implemented	as	a	class	hierarchy.	

}  Use	if	a	class	defines	many	behaviors	that	appear	as	
multiple	conditional	statements	in	its	operations.	
}  Move	related	conditional	branches	into	a	strategy	

Strategy	vs	Subclassing	

Einführung	in	die	Softwaretechnik	12	

}  Sub-classing	Context	mixes	algorithm‘s	implementation	
with	that	of	Context.		
Context	harder	to	understand,	maintain,	extend.	

}  When	using	sub-classing	we	can't	vary	the	algorithm	
dynamically.	

}  Sub-classing	results	in	many	related	classes.		
Only	differ	in	the	algorithm	or	behavior	they	employ.	

}  Encapsulating	the	algorithm	in	Strategy...	
}  lets	you	vary	the	algorithm	independently	of	its	context.	
}  makes	it	easier	to	switch,	understand,	and	extend	the	
algorithm.	

Passing	Context	Information	to	Strategy	

Einführung	in	die	Softwaretechnik	13	

}  The	Strategy	interface	is	shared	by	all	concrete	Strategy	
classes	whether	the	algorithms	they	implement	are	trivial	
or	complex.	

}  Some	concrete	strategies	won't	use	all	the	information	
passed	to	them		
}  Simple	concrete	strategies	may	use	none	of	it.	
}  Context	creates/initializes	parameters	that	never	get	used.	

}  If	this	is	an	issue	use	a	tighter	coupling	between	Strategy	
and	Context;	let	Strategy	know	about	Context	

Passing	Context	Information	to	Strategy	

Einführung	in	die	Softwaretechnik	14	

}  Two	possible	strategies:		
}  Pass	the	needed	information	as	a	parameter.	

}  Context	and	Strategy	decoupled		
}  Communication	overhead		
}  Algorithm	can’t	be	adapted	to	specific	needs	of	context		

}  Context	passes	itself	as	a	parameter	or	Strategy	has	a	
reference	to	its	Context.	
}  Reduced	communication	overhead	
}  Context	must	define	a	more	elaborate	interface	to	its	data		
}  Closer	coupling	of	Strategy	and	Context.	
}  Avoid	closer	coupling	by	defining	an	explicit	interface	for	retrieving	
context,	which	is	implemented	by	the	context	

Bridge	Pattern:	Motivation	

Einführung	in	die	Softwaretechnik	15	

We	want	to	support	multiple	operating	systems...	

We	want	to	provide	different	types	of	windows...	

Bridge	Pattern	

Einführung	in	die	Softwaretechnik	16	

}  Which	alternative	would	be	better	represented	using	
inheritance?	

}  What	technique	can	we	use	to	provide	both	types	of	
classifications?	

	

Bridge	Pattern	

Einführung	in	die	Softwaretechnik	17	

}  Intent		
}  Decouple	an	abstraction	from	its	implementation	so	that	the	
two	can	vary	independently.	

}  Structure	

Bridge	Pattern:	Example	

Einführung	in	die	Softwaretechnik	18	

}  By	encapsulating	the	concept	that	varies	we	can	avoid	
problems	with	inheritance	conflicts.	

}  This	is	very	similar	to	the	technique	used	in	the	Strategy	
pattern	

Bridge	Pattern:	Discussion	

Einführung	in	die	Softwaretechnik	19	

}  Decoupling	interface	and	implementation:	
}  Implementation	can	be	configured	at	run-time.	
}  Implementation	being	used	is	hidden	inside	abstraction.		

}  Improved	extensibility		
Abstraction	and	Implementer	hierarchies	can	be	
extended	independently.		

}  Issues	
}  Most	languages	do	not	support	parallel	hierarchies	very	well	

}  Type	safety	problems	

Decorator	Pattern	

Einführung	in	die	Softwaretechnik	20	

}  Intent	
}  We	need	to	add	responsibilities	to	existing	individual	objects		
}  …	dynamically	and	transparently,	without	affecting	other	objects.	
}  …	responsibilities	can	be	withdrawn	dynamically.		

}  Problem:	Extension	by	subclassing	is	not	practical:		
}  Large	number	of	independent	extensions	are	possible.	
}  Would	produce	an	explosion	of	subclasses	to	support	every	

combination.		
}  No	support	for	dynamic	adaptation.	
}  A	class	definition	may	be	hidden	or	otherwise	unavailable	for	

subclassing	
}  Cannot	change	all	constructor	calls	to	the	class	whose	object	are	to	

be	extended	

Limitations	of	Inheritance:	Example	

Einführung	in	die	Softwaretechnik	21	

Evolution:	
Adding	functionality	to	a	ByteArrayInputStream	to	read	whole	
sentences	and	not	just	single	bytes.	

Limitations	of	Inheritance:	Example	

Einführung	in	die	Softwaretechnik	22	

Evolution:	
We	also	want	to	have	the	possibility	to	read	
whole	sentences	using	FileInputStreams...	

After	the	n-th	iteration…	

Einführung	in	die	Softwaretechnik	23	

}  Problems:	
}  …	a	new	class	for	each	responsibility.		
}  responsibility	mix	fixed	statically.		

(How	about	PipedDataBufferedInputStream?)	
}  non-reusable	extensions;	code	duplication;	
}  maintenance	nightmare:	exponential	growth	of	number	of	classes	

Multiple	Inheritance	is	no	Solution	Either	

Einführung	in	die	Softwaretechnik	24	

}  static	responsibility	mix	
}  naming	conflicts	
}  hard	to	dispatch	super	calls	correctly	

“Multiple	inheritance	is	good,	but	there	is	no	
good	way	to	do	it.”	

A.	SYNDER	

Structure	of	the	Decorator	Pattern	

Einführung	in	die	Softwaretechnik	25	

Intent:	We	need	to	add	responsibilities	to	existing	individual	
objects	dynamically	and	transparently,	without	affecting	other	
objects.	

Example:	Decorator	in	java.io	

Einführung	in	die	Softwaretechnik	26	

}  java.io	abstracts	various	data	sources	and	destinations,	as	
well	as	processing	algorithms:	
}  Programs	operate	on	stream	objects	...	
}  independently	of	ultimate	data	source	/	destination	/	shape	of	
data.	

Decorator	Pattern:	Discussion	

Einführung	in	die	Softwaretechnik	27	

}  Decorator	enables	more	flexibility	than	inheritance:	
}  Responsibilities	can	be	added	/	removed	at	run-time.		
}  Different	Decorator	classes	for	a	specific	Component	class	
enable	to	mix	and	match	responsibilities.	

}  Easy	to	add	a	responsibility	twice;	e.g.,	for	a	double	
border,	attach	two	BorderDecorators	

}  Decorator	avoids	incoherent	classes:	
}  feature-laden	classes	high	up	in	the	hierarchy		
pay-as-you-go	approach:	don't	bloat,	but	extend	using	fine-
grained	Decorator	classes		
}  functionality	can	be	composed	from	simple	pieces.	
}  an	application	does	not	need	to	pay	for	features	it	doesn't	use.	

Decorator:	Problems	

Einführung	in	die	Softwaretechnik	28	

}  Lots	of	little	objects		
}  A	design	that	uses	Decorator	often	results	in	systems	
composed	of	lots	of	little	objects	that	all	look	alike.	

}  Objects	differ	only	in	the	way	they	are	interconnected,	not	in	
their	class	or	in	the	value	of	their	variables.	
Imagine	a	class	to	draw	a	border	around	a	component..	

}  Such	systems	are	easy	to	customize	by	those	who	understand	
them,	but	can	be	hard	to	learn	and	debug.	

}  Object	identity	
}  A	decorator	and	its	component	aren't	identical.	
From	an	object	identity	point	of	view,	a	decorated	component	
is	not	identical	to	the	component	itself.	

}  You	shouldn't	rely	on	object	identity	when	you	use	decorators	

Example:	Streams	in	java.io	

Einführung	in	die	Softwaretechnik	29	

}  A	stream	is	normally	addressed	via	the	outermost	Decorator.	
}  Sometimes,	a	reference	to	one	of	the	internal	objects	is	
maintained	and	operated	on		
}  operation	shouldn’t	include	actual	reads	or	writes		
}  good	style:	all	read()	operations	are	performed	only	to	the	head	

decorator	in	the	composite	stream	object		

}  Reading	from	an	internal	object	breaks	the	illusion	of	a	single	
object	accessed	via	a	single	reference,	and	makes	the	code	
more	difficult	to	understand.	

FileInputStream fin = new FileInputStream(“a.txt”);
BufferedInputStream din = new
BufferedInputStream(fin);
fin.read();

Decorator:	Problems	

Einführung	in	die	Softwaretechnik	30	

}  No	late	binding	
}  DELEGATION	VERSUS	FORWARD	SEMANTICS	

Forwarding	with	binding	of	this	to	
method	holder;	"ask"	an	object	to	do	
something	on	its	own.	

Binding	of	this	to	message	receiver:	
“ask”	an	object	to	do	something	on	
behalf	of	the	message	receiver.	

No	Late	Binding:	Example	

Einführung	in	die	Softwaretechnik	31	

Decorator:	Problems	

Einführung	in	die	Softwaretechnik	32	

}  Need	to	implement	forwarding	methods	for	those	
methods	not	relevant	to	the	decorator	
}  A	lot	of	repetitive	programming	work	
}  A	maintenance	problem:	What	if	the	decorated	class	changes	

}  Adding	new	methods	or	removing	methods	that	are	irrelevant	to	the	
decorators	

}  Decorator	classes	need	to	change	as	well	
}  This	is	a	variant	of	the	so-called	“fragile	base	class	problem”	

Decorator:	Issues	

Einführung	in	die	Softwaretechnik	33	

}  Keep	the	common	class	(Component)	lightweight:		
}  it	should	focus	on	defining	an	interface	(e.g.	implemented	as	
interface).	

}  defer	defining	data	representation	to	subclasses.	
}  otherwise	the	complexity	of	Component	might	make	the	
decorators	too	heavyweight	to	use	in	quantity.	

}  Putting	a	lot	of	functionality	into	Component	makes	it	
likely	that	subclasses	will	pay	for	features	they	don't	
need.	

}  These	issues	require	pre-planning.	
}  Difficult	to	apply	decorator	pattern	to	3rd-party	
component	class.	

Literature	

Einführung	in	die	Softwaretechnik	34	

}  A.	Shalloway,	J.R.	Trott.	Design	Patterns	Explained.		
Addison-Wesley,	2005.	
}  Chap.	9,14,15,18		

