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Topics	of	this	Lecture	

Einführung	in	die	Softwaretechnik	2	

}  Design	Patterns	
}  Template	
}  Strategy		
}  Bridge	
}  Decorator	

}  These	design	patterns	are	less	general	than	the	GRASP	
patterns	
}  They	focus	on	specific	design	problems	

}  These	are	some	of	the	most	common	and	most	
important	classical	design	patterns	in	OO	design	



Template	Method	Pattern	
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}  The	goal	is	to	separate...	
}  policies	from	detailed	mechanisms.		
}  invariant	and	variant	parts.	

}  Abstract	classes...	
}  define	interfaces.		
}  implement	high-level	policies.		

}  Control	sub-class	extensions.		
}  Avoid	code	duplication.	
}  The	Template	Method	Pattern	is	at	the	core	of	the	design	
of	object-oriented	frameworks.	



Using the Template Method Pattern for Bubble-Sort 

Einführung	in	die	Softwaretechnik	4	

public abstract class BubbleSorter{  
 protected int length = 0;  
 protected void sort() {  
  if(length <= 1) return;  
  for(int nextToLast= length-2;  
   nextToLast>= 0; nextToLast--)  
   for(int index = 0;  
    index <= nextToLast; index++)  
    if(outOfOrder(index)) swap(index);  
 }  
 protected abstract void swap(int index);  
 protected abstract boolean outOfOrder(int index);  

} 



IntBubbleSorter	
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public class IntBubbleSorter extends BubbleSorter{  
 private int[] array = null;  
 public void sort(int[] theArray) {  
  array = theArray;  
  length = array.length;  
  super.sort();  
 }  
 protected void swap(int index) {  
  int temp = array[index];  
  array[index] = array[index+ 1];  
  array[index+1] = temp;  
 } 
 protected boolean outOfOrder(int index) {  
  return(array[index] > array[index+ 1]);  
 }  

} 



Discussion	
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Discussion	
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}  Template	method	forces	detailed	implementations	to	
extend	the	template	class.	

}  Detailed	implementation	depend	on	the	template.	
}  Cannot	re-use	detailed	implementations‘	functionality.	
(E.g.,	swap	and	out-of-order	are	generally	useful.)	

}  If	we	want	to	re-use	the	handling	of	integer	arrays	with	
other	sorting	strategies	we	must	remove	the	dependency	
}  this	leads	us	to	the	Strategy	Pattern.	
	



Strategy	Pattern	
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}  Intent	
}  Define	a	family	of	algorithms,	encapsulate	each	one,	and	
make	them	interchangeable.	Strategy	lets	the	algorithm	vary	
independently	from	clients	that	use	it.	

}  Comparison	With	Template	
}  Using	the	strategy	pattern,	both	-	the	template	and	the	
detailed	implementations	-	depend	on	abstractions.	

}  Basic	Structure	



Strategy	Pattern:	Example	
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Strategy:	General	Structure	
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Define	a	family	of	algorithms,	encapsulate	each	one,	and	
make	them	interchangeable	



Strategy	Pattern:	Discussion	
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}  Use	if	many	related	classes	differ	only	in	their	behavior	
rather	than	implementing	different	related	abstractions.	
}  Strategies	allow	to	configure	a	class	with	one	of	many	
behaviors.	

}  Use	if	you	need	different	variants	of	an	algorithm.	
}  Strategies	can	be	used	when	variants	of	algorithms	are	
implemented	as	a	class	hierarchy.	

}  Use	if	a	class	defines	many	behaviors	that	appear	as	
multiple	conditional	statements	in	its	operations.	
}  Move	related	conditional	branches	into	a	strategy	



Strategy	vs	Subclassing	
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}  Sub-classing	Context	mixes	algorithm‘s	implementation	
with	that	of	Context.		
Context	harder	to	understand,	maintain,	extend.	

}  When	using	sub-classing	we	can't	vary	the	algorithm	
dynamically.	

}  Sub-classing	results	in	many	related	classes.		
Only	differ	in	the	algorithm	or	behavior	they	employ.	

}  Encapsulating	the	algorithm	in	Strategy...	
}  lets	you	vary	the	algorithm	independently	of	its	context.	
}  makes	it	easier	to	switch,	understand,	and	extend	the	
algorithm.	



Passing	Context	Information	to	Strategy	
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}  The	Strategy	interface	is	shared	by	all	concrete	Strategy	
classes	whether	the	algorithms	they	implement	are	trivial	
or	complex.	

}  Some	concrete	strategies	won't	use	all	the	information	
passed	to	them		
}  Simple	concrete	strategies	may	use	none	of	it.	
}  Context	creates/initializes	parameters	that	never	get	used.	

}  If	this	is	an	issue	use	a	tighter	coupling	between	Strategy	
and	Context;	let	Strategy	know	about	Context	



Passing	Context	Information	to	Strategy	
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}  Two	possible	strategies:		
}  Pass	the	needed	information	as	a	parameter.	

}  Context	and	Strategy	decoupled		
}  Communication	overhead		
}  Algorithm	can’t	be	adapted	to	specific	needs	of	context		

}  Context	passes	itself	as	a	parameter	or	Strategy	has	a	
reference	to	its	Context.	
}  Reduced	communication	overhead	
}  Context	must	define	a	more	elaborate	interface	to	its	data		
}  Closer	coupling	of	Strategy	and	Context.	
}  Avoid	closer	coupling	by	defining	an	explicit	interface	for	retrieving	
context,	which	is	implemented	by	the	context	



Bridge	Pattern:	Motivation	
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We	want	to	support	multiple	operating	systems...	

We	want	to	provide	different	types	of	windows...	



Bridge	Pattern	
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}  Which	alternative	would	be	better	represented	using	
inheritance?	

}  What	technique	can	we	use	to	provide	both	types	of	
classifications?	

	



Bridge	Pattern	
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}  Intent		
}  Decouple	an	abstraction	from	its	implementation	so	that	the	
two	can	vary	independently.	

}  Structure	



Bridge	Pattern:	Example	
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}  By	encapsulating	the	concept	that	varies	we	can	avoid	
problems	with	inheritance	conflicts.	

}  This	is	very	similar	to	the	technique	used	in	the	Strategy	
pattern	



Bridge	Pattern:	Discussion	
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}  Decoupling	interface	and	implementation:	
}  Implementation	can	be	configured	at	run-time.	
}  Implementation	being	used	is	hidden	inside	abstraction.		

}  Improved	extensibility		
Abstraction	and	Implementer	hierarchies	can	be	
extended	independently.		

}  Issues	
}  Most	languages	do	not	support	parallel	hierarchies	very	well	

}  Type	safety	problems	



Decorator	Pattern	
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}  Intent	
}  We	need	to	add	responsibilities	to	existing	individual	objects		
}  …	dynamically	and	transparently,	without	affecting	other	objects.	
}  …	responsibilities	can	be	withdrawn	dynamically.		

}  Problem:	Extension	by	subclassing	is	not	practical:		
}  Large	number	of	independent	extensions	are	possible.	
}  Would	produce	an	explosion	of	subclasses	to	support	every	

combination.		
}  No	support	for	dynamic	adaptation.	
}  A	class	definition	may	be	hidden	or	otherwise	unavailable	for	

subclassing	
}  Cannot	change	all	constructor	calls	to	the	class	whose	object	are	to	

be	extended	



Limitations	of	Inheritance:	Example	
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Evolution:	
Adding	functionality	to	a	ByteArrayInputStream	to	read	whole	
sentences	and	not	just	single	bytes.	



Limitations	of	Inheritance:	Example	

Einführung	in	die	Softwaretechnik	22	

Evolution:	
We	also	want	to	have	the	possibility	to	read	
whole	sentences	using	FileInputStreams...	



After	the	n-th	iteration…	
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}  Problems:	
}  …	a	new	class	for	each	responsibility.		
}  responsibility	mix	fixed	statically.		

(How	about	PipedDataBufferedInputStream?)	
}  non-reusable	extensions;	code	duplication;	
}  maintenance	nightmare:	exponential	growth	of	number	of	classes	



Multiple	Inheritance	is	no	Solution	Either	
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}  static	responsibility	mix	
}  naming	conflicts	
}  hard	to	dispatch	super	calls	correctly	

“Multiple	inheritance	is	good,	but	there	is	no	
good	way	to	do	it.”	

A.	SYNDER	



Structure	of	the	Decorator	Pattern	
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Intent:	We	need	to	add	responsibilities	to	existing	individual	
objects	dynamically	and	transparently,	without	affecting	other	
objects.	



Example:	Decorator	in	java.io	
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}  java.io	abstracts	various	data	sources	and	destinations,	as	
well	as	processing	algorithms:	
}  Programs	operate	on	stream	objects	...	
}  independently	of	ultimate	data	source	/	destination	/	shape	of	
data.	



Decorator	Pattern:	Discussion	
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}  Decorator	enables	more	flexibility	than	inheritance:	
}  Responsibilities	can	be	added	/	removed	at	run-time.		
}  Different	Decorator	classes	for	a	specific	Component	class	
enable	to	mix	and	match	responsibilities.	

}  Easy	to	add	a	responsibility	twice;	e.g.,	for	a	double	
border,	attach	two	BorderDecorators	

}  Decorator	avoids	incoherent	classes:	
}  feature-laden	classes	high	up	in	the	hierarchy		
pay-as-you-go	approach:	don't	bloat,	but	extend	using	fine-
grained	Decorator	classes		
}  functionality	can	be	composed	from	simple	pieces.	
}  an	application	does	not	need	to	pay	for	features	it	doesn't	use.	



Decorator:	Problems	
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}  Lots	of	little	objects		
}  A	design	that	uses	Decorator	often	results	in	systems	
composed	of	lots	of	little	objects	that	all	look	alike.	

}  Objects	differ	only	in	the	way	they	are	interconnected,	not	in	
their	class	or	in	the	value	of	their	variables.	
Imagine	a	class	to	draw	a	border	around	a	component..	

}  Such	systems	are	easy	to	customize	by	those	who	understand	
them,	but	can	be	hard	to	learn	and	debug.	

}  Object	identity	
}  A	decorator	and	its	component	aren't	identical.	
From	an	object	identity	point	of	view,	a	decorated	component	
is	not	identical	to	the	component	itself.	

}  You	shouldn't	rely	on	object	identity	when	you	use	decorators	



Example:	Streams	in	java.io	
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}  A	stream	is	normally	addressed	via	the	outermost	Decorator.	
}  Sometimes,	a	reference	to	one	of	the	internal	objects	is	
maintained	and	operated	on		
}  operation	shouldn’t	include	actual	reads	or	writes		
}  good	style:	all	read()	operations	are	performed	only	to	the	head	

decorator	in	the	composite	stream	object		

}  Reading	from	an	internal	object	breaks	the	illusion	of	a	single	
object	accessed	via	a	single	reference,	and	makes	the	code	
more	difficult	to	understand.	

FileInputStream fin = new FileInputStream(“a.txt”); 
BufferedInputStream din = new 
BufferedInputStream(fin); 
fin.read();  



Decorator:	Problems	
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}  No	late	binding	
}  DELEGATION	VERSUS	FORWARD	SEMANTICS	

Forwarding	with	binding	of	this	to	
method	holder;	"ask"	an	object	to	do	
something	on	its	own.	

Binding	of	this	to	message	receiver:	
“ask”	an	object	to	do	something	on	
behalf	of	the	message	receiver.	



No	Late	Binding:	Example	
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Decorator:	Problems	
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}  Need	to	implement	forwarding	methods	for	those	
methods	not	relevant	to	the	decorator	
}  A	lot	of	repetitive	programming	work	
}  A	maintenance	problem:	What	if	the	decorated	class	changes	

}  Adding	new	methods	or	removing	methods	that	are	irrelevant	to	the	
decorators	

}  Decorator	classes	need	to	change	as	well	
}  This	is	a	variant	of	the	so-called	“fragile	base	class	problem”	



Decorator:	Issues	
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}  Keep	the	common	class	(Component)	lightweight:		
}  it	should	focus	on	defining	an	interface	(e.g.	implemented	as	
interface).	

}  defer	defining	data	representation	to	subclasses.	
}  otherwise	the	complexity	of	Component	might	make	the	
decorators	too	heavyweight	to	use	in	quantity.	

}  Putting	a	lot	of	functionality	into	Component	makes	it	
likely	that	subclasses	will	pay	for	features	they	don't	
need.	

}  These	issues	require	pre-planning.	
}  Difficult	to	apply	decorator	pattern	to	3rd-party	
component	class.	
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