
Introduction	to	Software	Technique	
3.	Just	Enough	UML	

Klaus	Ostermann	

Einführung	in	die	Softwaretechnik	1	

Just	Enough	UML…	

Einführung	in	die	Softwaretechnik	2	

}  The	UML	is	the	Unified	Modeling	Language	
}  Successor	to	a	wave	of	OO	analysis	&	design	methods	that	appeared	

in	the	1980s	and	1990s	

}  It	is	a	modeling	language	to	express	high-level	design	
}  Defines	several	diagram	types	

}  Implicitly	associated	with	the	UML	is	also	a	method	or	process	
}  Method:	advice	on	what	steps	to	take	in	doing	a	design	

}  There	are	different	ways	to	use	UML.	We	will	mainly	use	it	as	a	
notation	to	communicate	high-level	OO	design	ideas.	

}  But	keep	in	mind:	No	user	is	going	to	thank	you	for	pretty	
pictures;	what	a	user	wants	is	software	that	executes		

Class	Diagrams	

Einführung	in	die	Softwaretechnik	3	

}  A	class	diagram	describes	the	types	of	objects	in	a	system	
and	the	various	kinds	of	static	relationships	between	
them	
}  Associations	
}  Subtypes	

}  Class	diagrams	also	show	the	attributes,	names/types	of	
operations,	and	constraints	that	restrict	how	objects	are	
connected	

Class	Diagrams	
Example	

Einführung	in	die	Softwaretechnik	4	

Three	ways	to	use	class	diagrams	

Einführung	in	die	Softwaretechnik	5	

}  Conceptual:	Draw	a	diagram	that	represents	the	concepts	
in	the	domain	under	study	
}  Little	or	no	regard	for	the	software	that	might	implement	it	

}  Specification:	Describing	the	interfaces	of	the	software,	
not	the	implementation	
}  Often	confused	in	OO	since	classes	combine	both	interfaces	
and	implementation	

}  Implementation:	Diagram	describes	actual	
implementation	classes	

}  Understanding	the	intended	perspective	is	crucial	to	
drawing	and	reading	class	diagrams	
}  Even	though	the	lines	between	them	are	not	sharp	

Associations	

Einführung	in	die	Softwaretechnik	6	

}  Associations	represent	relationships	between	instances	
of	classes	

}  Conceptual	perspective:	Associations	represent	
conceptual	relationships		

}  Specification	perspective:	Associations	represent	
responsibilities	

}  Implementation	perspective:	Associations	represent	
pointers/fields	between	related	classes	

Associations	

Einführung	in	die	Softwaretechnik	7	

}  Each	association	has	two	ends	
}  Each	end	can	be	named	with	a	label	called	role	name	
}  An	end	also	has	a	multiplicity:	How	many	objects	participate	in	
the	given	relationship	
}  General	case:	give	upper	and	lower	bound	in	lower..upper	notation	
}  Abbreviations:	*	=	0..infinity,	1	=	1..1	
}  Most	common	multiplicities:	1,	*,	0..1	

}  In	the	specification	perspective,	one	can	infer	existence	
and	names	(if	naming	conventions	exist)	of	methods	to	
navigate	the	associations,	for	example:	
Class Order {
 public Customer getCustomer();
 public Set<OrderLine> getOrderLines();
 …
}

Associations	

Einführung	in	die	Softwaretechnik	8	

}  In	the	implementation	perspective	we	can	conclude	
existence	of	pointers	in	both	directions	between	related	
classes	

class Order {
 private Customer _ customer;
 private Set<OrderLine> _orderLines;
 …
}
class Customer {
 private Set<Order> orders;
 …
}

Associations	
Unidirectional	vs	bidirectional	

Einführung	in	die	Softwaretechnik	9	

}  Arrows	in	association	lines	indicate	navigability	
}  Only	one	arrow:	unidirectional	association	
}  No	or	two	arrows:	bidirectional	association	

}  Specification	perspective:	Indicates	navigation	operations	
in	interfaces	

}  Implementation	perspective:	Indicates	which	objects	
contain	the	pointers	to	the	other	objects	

}  Arrows	serve	no	useful	purpose	in	conceptual	perspective	
}  For	bidirectional	associations,	the	two	navigations	must	
be	inverses	of	each	other	

Unidirectional	
Associations	

Einführung	in	die	Softwaretechnik	10	

Class	Diagrams:	Attributes	

Einführung	in	die	Softwaretechnik	11	

}  Attributes	are	very	similar	to	associations	
}  Conceptual	level:	A	customer’s	name	attribute	indicates	that	
customers	have	names	

}  Specification	level:	Attribute	indicates	that	a	customer	object	
can	tell	you	its	name	

}  Implementation	level:	customer	has	a	field	(aka	instance	
variable)	for	its	name	

}  UML	syntax	for	attributes:	
visibility	name	:	type	=	defaultValue	
}  Details	may	be	omitted	

Class	Diagrams:	Attributes	vs	Associations	

Einführung	in	die	Softwaretechnik	12	

}  Attributes	can	describe	non-object-oriented	data	
}  Integers,	strings,	booleans,	…	

}  From	conceptual	perspective	this	is	the	only	difference	
}  Specification	and	implementation	perspective:	

}  Attributes	imply	navigability	from	type	to	attribute	only	
}  Implied	that	type	contains	solely	its	own	copy	of	the	attribute	
objects	

Class	Diagrams:	Operations	

Einführung	in	die	Softwaretechnik	13	

}  Operations	are	the	processes	that	a	class	knows	to	carry	
out	

}  Most	obviously	correspond	to	methods	on	a	class	
}  Full	syntax:	
visibility	name(parameter-list)	:	return-type	
}  visibility	is	+	(public),	#	(protected),	or	-	(private)	
}  name	is	a	string	
}  parameter-list	contains	comma-separated	parameters	whose	
syntax	is	similar	to	that	for	attributes	
}  Can	also	specificy	direction:	input	(in),	output(out),	or	both	(inout)	
}  Default:	in	

}  return-type	is	comma-separated	list	of	return	types	(usually	
only	one)	

Class	Diagrams:	Constraint	Rules	

Einführung	in	die	Softwaretechnik	14	

}  Arbitrary	constraints	can	be	added	by	putting	them	inside	
braces({})	

}  Mostly	formulated	in	informal	natural	language	
}  UML	also	provides	a	formal	Object	Constraint	Language	
(OCL)	

}  Constraints	should	be	implemented	as	assertions	in	your	
programming	language	

Einführung	in	die	Softwaretechnik	15	

Object	Diagrams	

(Class	diagram	that		
belongs	to	the	object	
diagram)	

Aggregation	vs	Composition	

Einführung	in	die	Softwaretechnik	16	

}  Aggregation	expresses	“part-of”	relationships,	but	rather	
vague	semantics	

}  Composition	is	stronger:	Part	object	live	and	die	with	the	
whole	

Abstract	classes	and	methods	

Einführung	in	die	Softwaretechnik	17	

}  UML	convention	for	abstract	classes/methods:	Italicize	name	
of	abstract	item	or	use	{abstract}	constraint	

Interfaces	and	Lollipop	notation	

Einführung	in	die	Softwaretechnik	18	

CRC	cards	

Einführung	in	die	Softwaretechnik	19	

}  CRC	=	Class-Responsibility-Collaboration	
}  Invented	by	Ward	Cunningham	and	Kent	Beck	in	the	
1980s		to	ease	the	development	of	a	class	model	from	the	
requirements	

}  Not	part	of	UML,	but	have	proven	to	be	quite	useful	
}  More	information:	
http://c2.com/doc/oopsla89/paper.html	

Sample	CRC	card	

Einführung	in	die	Softwaretechnik	20	

CRC	Cards	

Einführung	in	die	Softwaretechnik	21	

}  Idea:	Describe	responsibilities	and	collaboration	of	each	
class	on	an	index	card	(“Karteikarte”)	

}  Motivation:	Capture	purpose	of	class	in	a	few	sentences	
without	thinking	about	data,	processes,	and	other	
implementation	details	

}  Chief	benefit	of	CRC	cards:	They	encourage	discussion	
among	developers	

}  Common	mistake:	Long	lists	of	low-level	responsibilities	
}  Responsibilities	should	fit	conveniently	on	an	index	card	
}  Otherwise	consider	to	split	the	class	or	summarize	low-level	
responsibilities	in	higher-level	responsibilities	

Interaction	Diagrams	

Einführung	in	die	Softwaretechnik	22	

}  Interaction	diagrams	describe	how	groups	of	objects	
collaborate	in	some	behavior	

}  Two	kinds	of	interaction	diagrams:	sequence	diagrams	
and	collaboration	diagrams	

Sequence	Diagram	Example	

Einführung	in	die	Softwaretechnik	23	

Sequence	Diagrams	

Einführung	in	die	Softwaretechnik	24	

}  Vertical	line	is	called	lifeline	
}  Each	message	represented	by	an	arrow	between	lifelines	

}  Labeled	at	minimum	with	message	name	
}  Can	also	include	arguments	and	control	information	
}  Can	show	self-call	by	sending	the	message	arrow	back	to	the	
same	lifeline	

}  Can	add	condition	which	indicates	when	message	is	sent,	
such	as	[needsReorder]	

}  Can	add	iteration	marker	which	shows	that	a	message	is	
sent	many	times	to	multiple	receiver	objects	

Collaboration	Diagram	Example	

Einführung	in	die	Softwaretechnik	25	

Collaboration	Diagram	Example	
Decimal	Numbering	System	

Einführung	in	die	Softwaretechnik	26	

Sequence	vs	Collaboration	Diagrams	

Einführung	in	die	Softwaretechnik	27	

}  Sequence	diagrams	are	better	to	visualize	the	order	in	
which	things	occur	

}  Collaboration	diagrams	also	illustrate	how	objects	are	
statically	connected	

}  You	should	generally	use	interaction	diagrams	when	you	
want	to	look	at	the	behavior	of	several	objects	within	a	
single	use	case.	

The	UML	universe	

Einführung	in	die	Softwaretechnik	28	

}  There	is	a	lot	more	to	the	UML	than	what	we	have	shown	
here	
}  More	diagram	types	

}  State	diagrams,	activity	diagrams,	use	cases,	deployment	diagrams,	…	

}  More	notational	features	in	all	diagram	types	
}  Stereotypes,	parameterized	classes,	…	

}  We	will	touch	some	UML	features	not	shown	here	during	
the	course	and	will	explain	them	as	needed	

UML	Misconceptions	and	Limitations	

Einführung	in	die	Softwaretechnik	29	

}  UML	is	not	language-independent.	It	is	a	language,	as	the	L	in	
UML	suggests.	

}  This	language	is	something	like	a	high-level	“best-of”	of	
common	OO	programming	language	features	
}  It	contains	notation	for	features	that	are	only	available	in	some	(or	

even	no)	programming	language	(such	as:	dynamic	classification)	
}  Every	OO	language	has	features	that	have	no	corresponding	notation	

in	the	UML	(e.g.	wildcards	in	Java)	
}  The	same	UML	notation	may	have	a	different	meaning	in	different	

OO	languages	(e.g.	visibility)	
}  The	UML	has	no	clearly	defined	semantics.	This	is	both	a	
limitation	and	a	feature	
}  Good	for	informal	diagrams,	bad	for	formal	specifications	

}  No	consensus	in	the	community	about	the	scenarios	where	
UML	is	useful	

Literature	

Einführung	in	die	Softwaretechnik	30	

}  Martin	Fowler.	UML	Distilled.	Addison-Wesley.	
}  Beck,	Cunningham:	A	Laboratory	For	Teaching		
Object-Oriented	Thinking.	OOPSLA’	89	
available	online	at	c2.com/doc/oopsla89/paper.html	

