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Just	Enough	UML…	
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}  The	UML	is	the	Unified	Modeling	Language	
}  Successor	to	a	wave	of	OO	analysis	&	design	methods	that	appeared	

in	the	1980s	and	1990s	

}  It	is	a	modeling	language	to	express	high-level	design	
}  Defines	several	diagram	types	

}  Implicitly	associated	with	the	UML	is	also	a	method	or	process	
}  Method:	advice	on	what	steps	to	take	in	doing	a	design	

}  There	are	different	ways	to	use	UML.	We	will	mainly	use	it	as	a	
notation	to	communicate	high-level	OO	design	ideas.	

}  But	keep	in	mind:	No	user	is	going	to	thank	you	for	pretty	
pictures;	what	a	user	wants	is	software	that	executes		



Class	Diagrams	
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}  A	class	diagram	describes	the	types	of	objects	in	a	system	
and	the	various	kinds	of	static	relationships	between	
them	
}  Associations	
}  Subtypes	

}  Class	diagrams	also	show	the	attributes,	names/types	of	
operations,	and	constraints	that	restrict	how	objects	are	
connected	



Class	Diagrams	
Example	
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Three	ways	to	use	class	diagrams	
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}  Conceptual:	Draw	a	diagram	that	represents	the	concepts	
in	the	domain	under	study	
}  Little	or	no	regard	for	the	software	that	might	implement	it	

}  Specification:	Describing	the	interfaces	of	the	software,	
not	the	implementation	
}  Often	confused	in	OO	since	classes	combine	both	interfaces	
and	implementation	

}  Implementation:	Diagram	describes	actual	
implementation	classes	

}  Understanding	the	intended	perspective	is	crucial	to	
drawing	and	reading	class	diagrams	
}  Even	though	the	lines	between	them	are	not	sharp	



Associations	
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}  Associations	represent	relationships	between	instances	
of	classes	

}  Conceptual	perspective:	Associations	represent	
conceptual	relationships		

}  Specification	perspective:	Associations	represent	
responsibilities	

}  Implementation	perspective:	Associations	represent	
pointers/fields	between	related	classes	



Associations	
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}  Each	association	has	two	ends	
}  Each	end	can	be	named	with	a	label	called	role	name	
}  An	end	also	has	a	multiplicity:	How	many	objects	participate	in	
the	given	relationship	
}  General	case:	give	upper	and	lower	bound	in	lower..upper	notation	
}  Abbreviations:	*	=	0..infinity,	1	=	1..1	
}  Most	common	multiplicities:	1,	*,	0..1	

}  In	the	specification	perspective,	one	can	infer	existence	
and	names	(if	naming	conventions	exist)	of	methods	to	
navigate	the	associations,	for	example:	
Class Order { 
  public Customer getCustomer(); 
  public Set<OrderLine> getOrderLines(); 
 … 
} 



Associations	
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}  In	the	implementation	perspective	we	can	conclude	
existence	of	pointers	in	both	directions	between	related	
classes	

class Order { 
  private Customer _ customer; 
  private Set<OrderLine> _orderLines;  
  …  
} 
class Customer { 
  private Set<Order> orders; 
  … 
} 



Associations	
Unidirectional	vs	bidirectional	
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}  Arrows	in	association	lines	indicate	navigability	
}  Only	one	arrow:	unidirectional	association	
}  No	or	two	arrows:	bidirectional	association	

}  Specification	perspective:	Indicates	navigation	operations	
in	interfaces	

}  Implementation	perspective:	Indicates	which	objects	
contain	the	pointers	to	the	other	objects	

}  Arrows	serve	no	useful	purpose	in	conceptual	perspective	
}  For	bidirectional	associations,	the	two	navigations	must	
be	inverses	of	each	other	



Unidirectional	
Associations	
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Class	Diagrams:	Attributes	
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}  Attributes	are	very	similar	to	associations	
}  Conceptual	level:	A	customer’s	name	attribute	indicates	that	
customers	have	names	

}  Specification	level:	Attribute	indicates	that	a	customer	object	
can	tell	you	its	name	

}  Implementation	level:	customer	has	a	field	(aka	instance	
variable)	for	its	name	

}  UML	syntax	for	attributes:	
visibility	name	:	type	=	defaultValue	
}  Details	may	be	omitted	



Class	Diagrams:	Attributes	vs	Associations	
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}  Attributes	can	describe	non-object-oriented	data	
}  Integers,	strings,	booleans,	…	

}  From	conceptual	perspective	this	is	the	only	difference	
}  Specification	and	implementation	perspective:	

}  Attributes	imply	navigability	from	type	to	attribute	only	
}  Implied	that	type	contains	solely	its	own	copy	of	the	attribute	
objects	



Class	Diagrams:	Operations	
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}  Operations	are	the	processes	that	a	class	knows	to	carry	
out	

}  Most	obviously	correspond	to	methods	on	a	class	
}  Full	syntax:	
visibility	name(parameter-list)	:	return-type	
}  visibility	is	+	(public),	#	(protected),	or	-	(private)	
}  name	is	a	string	
}  parameter-list	contains	comma-separated	parameters	whose	
syntax	is	similar	to	that	for	attributes	
}  Can	also	specificy	direction:	input	(in),	output(out),	or	both	(inout)	
}  Default:	in	

}  return-type	is	comma-separated	list	of	return	types	(usually	
only	one)	



Class	Diagrams:	Constraint	Rules	
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}  Arbitrary	constraints	can	be	added	by	putting	them	inside	
braces({})	

}  Mostly	formulated	in	informal	natural	language	
}  UML	also	provides	a	formal	Object	Constraint	Language	
(OCL)	

}  Constraints	should	be	implemented	as	assertions	in	your	
programming	language	
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Object	Diagrams	

(Class	diagram	that		
belongs	to	the	object	
diagram)	



Aggregation	vs	Composition	
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}  Aggregation	expresses	“part-of”	relationships,	but	rather	
vague	semantics	

}  Composition	is	stronger:	Part	object	live	and	die	with	the	
whole	



Abstract	classes	and	methods	
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}  UML	convention	for	abstract	classes/methods:	Italicize	name	
of	abstract	item	or	use	{abstract}	constraint	



Interfaces	and	Lollipop	notation	
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CRC	cards	

Einführung	in	die	Softwaretechnik	19	

}  CRC	=	Class-Responsibility-Collaboration	
}  Invented	by	Ward	Cunningham	and	Kent	Beck	in	the	
1980s		to	ease	the	development	of	a	class	model	from	the	
requirements	

}  Not	part	of	UML,	but	have	proven	to	be	quite	useful	
}  More	information:	
http://c2.com/doc/oopsla89/paper.html	



Sample	CRC	card	
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CRC	Cards	
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}  Idea:	Describe	responsibilities	and	collaboration	of	each	
class	on	an	index	card	(“Karteikarte”)	

}  Motivation:	Capture	purpose	of	class	in	a	few	sentences	
without	thinking	about	data,	processes,	and	other	
implementation	details	

}  Chief	benefit	of	CRC	cards:	They	encourage	discussion	
among	developers	

}  Common	mistake:	Long	lists	of	low-level	responsibilities	
}  Responsibilities	should	fit	conveniently	on	an	index	card	
}  Otherwise	consider	to	split	the	class	or	summarize	low-level	
responsibilities	in	higher-level	responsibilities	



Interaction	Diagrams	
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}  Interaction	diagrams	describe	how	groups	of	objects	
collaborate	in	some	behavior	

}  Two	kinds	of	interaction	diagrams:	sequence	diagrams	
and	collaboration	diagrams	



Sequence	Diagram	Example	
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Sequence	Diagrams	
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}  Vertical	line	is	called	lifeline	
}  Each	message	represented	by	an	arrow	between	lifelines	

}  Labeled	at	minimum	with	message	name	
}  Can	also	include	arguments	and	control	information	
}  Can	show	self-call	by	sending	the	message	arrow	back	to	the	
same	lifeline	

}  Can	add	condition	which	indicates	when	message	is	sent,	
such	as	[needsReorder]	

}  Can	add	iteration	marker	which	shows	that	a	message	is	
sent	many	times	to	multiple	receiver	objects	



Collaboration	Diagram	Example	
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Collaboration	Diagram	Example	
Decimal	Numbering	System	
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Sequence	vs	Collaboration	Diagrams	
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}  Sequence	diagrams	are	better	to	visualize	the	order	in	
which	things	occur	

}  Collaboration	diagrams	also	illustrate	how	objects	are	
statically	connected	

}  You	should	generally	use	interaction	diagrams	when	you	
want	to	look	at	the	behavior	of	several	objects	within	a	
single	use	case.	



The	UML	universe	
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}  There	is	a	lot	more	to	the	UML	than	what	we	have	shown	
here	
}  More	diagram	types	

}  State	diagrams,	activity	diagrams,	use	cases,	deployment	diagrams,	…	

}  More	notational	features	in	all	diagram	types	
}  Stereotypes,	parameterized	classes,	…	

}  We	will	touch	some	UML	features	not	shown	here	during	
the	course	and	will	explain	them	as	needed	



UML	Misconceptions	and	Limitations	
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}  UML	is	not	language-independent.	It	is	a	language,	as	the	L	in	
UML	suggests.	

}  This	language	is	something	like	a	high-level	“best-of”	of	
common	OO	programming	language	features	
}  It	contains	notation	for	features	that	are	only	available	in	some	(or	

even	no)	programming	language	(such	as:	dynamic	classification)	
}  Every	OO	language	has	features	that	have	no	corresponding	notation	

in	the	UML	(e.g.	wildcards	in	Java)	
}  The	same	UML	notation	may	have	a	different	meaning	in	different	

OO	languages	(e.g.	visibility)	
}  The	UML	has	no	clearly	defined	semantics.	This	is	both	a	
limitation	and	a	feature	
}  Good	for	informal	diagrams,	bad	for	formal	specifications	

}  No	consensus	in	the	community	about	the	scenarios	where	
UML	is	useful	
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