
Introduction	to	Software	Technology	
3.	Software	Design	

Klaus	Ostermann	

Einführung	in	die	Softwaretechnik	1	

Goal	of	Software	Design	

Einführung	in	die	Softwaretechnik	2	

}  For	each	desired	program	behavior	there	are	infinitely	
many	programs	that	have	this	behavior	
}  What	are	the	differences	between	the	variants?	
}  Which	variant	should	we	choose?	

}  Since	we	usually	have	to	synthesize	rather	than	choose	
the	solution…	
}  How	can	we	design	a	variant	that	has	the	desired	properties?	

Example	

Einführung	in	die	Softwaretechnik	3	

}  Sorting	with	configurable	order,	variant	A	

void sort(int[] list, String order) {
 …
 boolean mustswap;
 if (order.equals(“up”)) {
 mustswap = list[i] < list[j];
 } else if (order.equals(“down”)) {
 mustswap = list[i] > list[j];
 }
 …
}

Example	

Einführung	in	die	Softwaretechnik	4	

}  Sorting	with	configurable	order,	variant	B	
void sort(int[] list, Comparator cmp) {
 …
 boolean mustswap;
 mustswap = cmp.compare(list[i], list[j]);
 …
}
interface Comparator {
 boolean compare(int i, int j);
}
class UpComparator implements Comparator {
 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {
 boolean compare(int I, int j) { return i>j; }}

(by	the	way,	this	design	is	called	“strategy	pattern”)	

Quality	of	a	Software	Design	

Einführung	in	die	Softwaretechnik	5	

}  How	can	we	measure	the	internal	quality	of	a	software	
design?	
}  Extensibility,	Maintainability,	Understandability,	Readability,	…	
}  Robustness	to	change	
}  Low	Coupling	&	High	Cohesion	
}  Reusability	
}  All	these	qualities	are	typically	summarized	by	the	term	
modularity	

}  …as	opposed	to	external	quality	
}  Correctness:	Valid	implementation	of	requirements	
}  Ease	of	Use	
}  Resource	consumption	
}  Legal	issues,	political	issues,	…	

Modularity	

Einführung	in	die	Softwaretechnik	6	

Modularity	

Einführung	in	die	Softwaretechnik	7	

}  A	software	construction	method	is	modular	if	it	helps	
designers	to	produce	software	systems	made	of	
autonomous	elements	connected	by	a	coherent,	simple	
structure	

}  In	the	following	we’ll	elaborate	on	that:	
}  Five	criteria	
}  Five	Rules	
}  Five	Principles	

	

Five	Criteria:	Modular	Decomposability	

Einführung	in	die	Softwaretechnik	8	

A	software	construction	method	satisfies	Modular	
Decomposability	if	it	helps	in	the	task	of	decomposing	a	
software	problem	into	a	small	number	of	less	complex	
subproblems,	connected	by	a	simple	structure,	and	

independent	enough	to	allow	further	work	to	proceed	
separately	on	each	of	them.	

Five	Criteria:	Modular	Decomposability	

Einführung	in	die	Softwaretechnik	9	

}  Modular	Decomposability	implies:	Division	of	Labor	
possible!	

}  Example:	Top-Down	Design	
}  Counter-Example:	Production	of	a	global	initialization	
module	

Five	Criteria:	Modular	Composability	

Einführung	in	die	Softwaretechnik	10	

A	method	satisfies	Modular	Composability	if	it	favors	the	
products	of	software	elements	which	may	then	be	freely	
combined	with	each	other	to	produce	new	systems,	

possibly	in	an	environment	quite	different	from	the	one	
in	which	they	were	initially	developed.	

Five	Criteria:	Modular	Composability	

Einführung	in	die	Softwaretechnik	11	

}  Is	dual	to	modular	decomposability	
}  Is	directly	connected	with	reusability	

}  Old	“dream”	of	programming:	programming	as	construction	
box	activity		

}  Example	1:	Libraries	have	been	reused	successfully	in	
countless	domains	

}  Example	2:	Unix	Shell	Commands	
}  Counter-Example:	Preprocessors	

Five	Criteria:	Modular	Understandability	

Einführung	in	die	Softwaretechnik	12	

A	method	favors	Modular	Understandability	if	it	helps	
produce	software	in	which	a	human	reader	can	understand	
each	module	without	having	to	know	the	others,	or,	at	
worst,	by	having	to	examine	only	a	few	of	the	others.	

Five	Criteria:	Modular	Understandability	

Einführung	in	die	Softwaretechnik	13	

}  Important	for	maintenance	
}  Applies	to	all	software	artifacts,	not	just	code	
}  Counter-example:	Sequential	dependencies	between	
modules	

Five	Criteria:	Modular	Continuity	

Einführung	in	die	Softwaretechnik	14	

A	method	satisfies	Modular	Continuity	if,	in	the	software	
architectures	that	it	yields,	a	small	change	in	the	problem	
specification	will	trigger	a	change	of	just	one	module,	or	a	

small	number	of	modules.	

Five	Criteria:	Modular	Continuity	

Einführung	in	die	Softwaretechnik	15	

}  Example	1:	Symbolic	constants	(as	opposed	to	magic	
numbers)	

}  Example	2:	Hiding	data	representation	behind	an	
interface	

}  Counter-Example:	Program	designs	depending	on	fragile	
details	of	hardware	or	compiler	

Five	Criteria:	Modular	Protection	

Einführung	in	die	Softwaretechnik	16	

A	method	satisfied	Modular	Protection	if	it	yields	
architectures	in	which	the	effect	of	an	abnormal	

condition	occurring	at	run	time	in	a	module	will	remain	
confined	to	that	module,	or	at	worst	will	only	propagate	

to	a	few	neighboring	modules.	

Five	Criteria:	Modular	Protection	

Einführung	in	die	Softwaretechnik	17	

}  Motivation:	Big	software	will	always	contain	bugs	etc.,	
failures	unavoidable	

}  Example:	Defensive	Programming	
}  Counter-Example:	An	erroneous	null	pointer	in	one	
module	leads	to	an	error	in	a	different	module	

Five	Rules	

Einführung	in	die	Softwaretechnik	18	

}  Five	Rules	will	follow	which	we	must	observe	to	ensure	
high-quality	design	

Five	Rules:	Direct	Mapping	

Einführung	in	die	Softwaretechnik	19	

The	modular	structure	devised	in	the	process	of	
building	a	software	system	should	remain	compatible	
with	any	modular	structure	devised	in	the	process	of	

modeling	the	problem	domain.	

Five	Rules:	Direct	Mapping	

Einführung	in	die	Softwaretechnik	20	

}  Follows	from	continuity	and	decomposability	
}  A.k.a.	“low	representational	gap”[C.	Larman]	

Five	Rules:	Few	Interfaces	

Einführung	in	die	Softwaretechnik	21	

If	two	modules	communicate,	they	should	
exchange	as	little	information	as	possible	

Five	Rules:	Few	Interfaces	

Einführung	in	die	Softwaretechnik	22	

}  Want	topology	with	few	connections	
}  Follows	from	continuity	and	protection;	otherwise	
changes/errors	would	propagate	more	

Five	Rules:	Small	Interfaces	

Einführung	in	die	Softwaretechnik	23	

If	two	modules	communicate,	they	should	
exchange	as	little	information	as	possible	

Five	Rules:	Small	Interfaces	

Einführung	in	die	Softwaretechnik	24	

}  Follows	from	continuity	and	protection,	required	for	
composability	

}  Counter-Example:	Big	Interfaces	J		

Five	Rules:	Explicit	Interfaces	

Einführung	in	die	Softwaretechnik	25	

Whenever	two	modules	A	and	B	communicate,	this	must	
be	obvious	from	the	interface	of	A	or	B	or	both.	

Five	Rules:	Explicit	Interfaces	

Einführung	in	die	Softwaretechnik	26	

}  Counter-Example	1:	Global	Variables	
}  Counter-Example	2:	Aliasing	–	mutation	of	shared	heap	
structures	

Intermezzo:	Law	of	Demeter	(LoD)	

Einführung	in	die	Softwaretechnik	27	

}  LoD:	Each	module	should	have	only	limited	knowledge	
about	other	units:	only	units	"closely"	related	to	the	
current	unit	

}  In	particular:	Don’t	talk	to	strangers!	
}  For	instance,	no	a.getB().getC().foo()	
}  Motivated	by	continuity	

Five	Rules:	Information	Hiding	

Einführung	in	die	Softwaretechnik	28	

The	designer	of	every	module	must	select	a	subset	
of	the	module’s	properties	as	the	official	
information	about	the	module,	to	be	made	
available	to	authors	of	client	modules.	

Five	Rules:	Information	Hiding	

Einführung	in	die	Softwaretechnik	29	

Five	Rules:	Information	Hiding	

Einführung	in	die	Softwaretechnik	30	

}  Reynolds’	parable	about	complex	numbers…	
}  Implied	by	continuity	
}  The	iceberg	analogy	is	slightly	misleading,	since	an	
interface	also	abstracts	over	the	implementation	

Five	Principles	

Einführung	in	die	Softwaretechnik	31	

}  From	the	preceding	rules,	and	indirectly	from	the	criteria,	
five	principles	of	software	construction	follow:		
}  The	Linguistic	Modular	Units	principle.	
}  The	Self-Documentation	principle.	
}  The	Uniform	Access	principle.		
}  The	Open-Closed	principle.		
}  The	Single	Choice	principle.		

Five	Principles:	Linguistic	Modular	Units	

Einführung	in	die	Softwaretechnik	32	

Modules	must	correspond	to	syntactic	units	in	
the	language	used.	

Five	Principles:	Linguistic	Modular	Units	

Einführung	in	die	Softwaretechnik	33	

}  Excludes	methods	that	suggest	a	certain	module	concept	
and	a	language	that	does	not	offer	the	corresponding	
modular	construct	

}  Implied	by	continuity	and	direct	mapping	
}  Both	require	direct	correspondence	between	specification,	
design,	and	implementation	modules	

}  Implied	by	decomposability	and	composability	
}  The	implementation	of	every	task	must	result	in	a	well-
delimited	syntactic	unit	

Five	Principles:	Self-Documentation	Principle	

Einführung	in	die	Softwaretechnik	34	

The	designer	of	a	module	should	strive	to	make	
all	information	about	the	

module	part	of	the	module	itself.	

Five	Principles:	Self-Documentation	Principle	

Einführung	in	die	Softwaretechnik	35	

}  Precludes	keeping	information	about	the	module	in	a	
separate	document	

}  Justification:	
}  Modular	understandability	principle	
}  Continuity,	hard	to	keep	separate	documents	“in	sync”	
}  In	general:	Changeability	

}  Traditional	“heavy-weight”	SE	processes	have	a	different	
point	of	view	on	this	

}  See	also	material	of	previous	lecture	about	literate	
programming	and	good	documentation	in	general	

Five	Principles:	Uniform	Access	

Einführung	in	die	Softwaretechnik	36	

All	services	offered	by	a	module	should	be	
available	through	a	uniform	

notation,	which	does	not	betray	whether	they	
are	implemented	through	

storage	or	through	computation	

Five	Principles:	Uniform	Access	

Einführung	in	die	Softwaretechnik	37	

}  Justification:	Continuity	criterion,	special	case	of	
information	hiding	

}  Example:	The	balance	of	an	account	may	be	stored	as	
data,	or	it	may	be	computed	from	the	list	of	transactions	
}  This	is	a	time/space	tradeoff	
}  Difference	should	not	be	visible	for	a	client	

}  Some	languages	support	this	principle	directly	
}  Ruby,	Eiffel,	Python(*),	Smalltalk(*)	
}  A	design	convention	in	other	languages		

}  “getter/setter”	methods	in	Java	

Five	Principles:	Open-Closed	Principle	

Einführung	in	die	Softwaretechnik	38	

Modules	should	be	both	open	and	closed.	

Five	Principles:	Open-Closed	Principle	

Einführung	in	die	Softwaretechnik	39	

}  A	module	is	said	to	be	open	if	it	is	still	available	for	
extension.		
}  For	example,	it	should	be	possible	to	expand	its	set	of	
operations	or	add	fields	to	its	data	structures.	

}  A	module	is	said	to	be	closed	if	it	is	available	for	use	by	
other	modules.		
}  Well-defined	stable	interface	
}  Can	be	compiled,	stored,	…	

}  Motivation:	Openness	for	future	extensions,	closedness	
for	composition	

Five	Principles:	Open-Closed	Principle	

Einführung	in	die	Softwaretechnik	40	

}  Example:	Classes	in	OO	languages	are	open	through	
inheritance	yet	can	be	used	through	constructor	calls	

}  Counter-Example:	Packages	in	Java	
}  What	happens	if	modules	are	not	open:		

}  “Monkey	patching”	in	Javascript	

				(you	don’t	need	to	understand	this	example	in	detail)	

eval("getBrowser().removeTab ="+
 getBrowser().removeTab.toString().replace(
 'this.addTab("about:blank");',
 'if (SpeedDial.loadInLastTab) {this.addTab('
 +'"chrome://speeddial/content/speeddial.xul"'
 +')} else { this.addTab("about:blank")}'
));

Five	Principles:	Single	Choice	

Einführung	in	die	Softwaretechnik	41	

Whenever	a	software	system	must	support	a	set	of	
alternatives,	one	and	only	one	module	in	the	
system	should	know	their	exhaustive	list.	

Five	Principles:	Single	Choice	

Einführung	in	die	Softwaretechnik	42	

}  Special	case	of	the	DRY	principle	(Don’t	repeat	yourself):	
}  Every	piece	of	knowledge	must	have	a	single,	unambiguous,	
authoritative	representation	within	a	system	

}  Typical	examples	of	violations	of	this	principle:	
}  Multiple	If/then/else	or	case	statements	with	identical	
conditions		

}  Pattern	Matching	in	functional	programming	

}  Is	a	consequence	of	open-closed	principle	
}  Is	a	form	of	information	hiding	

Five	Principles:	Single	Choice	

Einführung	in	die	Softwaretechnik	43	

}  Avoided	in	OO	languages	by	using	subtyping	and	late	
binding	
}  Cf.	sorting	example	in	the	beginning	of	this	presentation	
}  However,	OO	violates	the	principle	itself	in	that	the	list	of	
methods	in	an	interface	is	closed	and	replicated	in	all	
implementations	

}  Simple	principle	but	quite	hard	to	realize	
}  Cf.	solutions	to	the	so-called	‘expression	problem’		

Discussion	

Einführung	in	die	Softwaretechnik	44	

}  Examine	the	modular	structures	of	any	programming	
language	which	you	know	

}  Assess	how	they	support	the	criteria	and	principles	
presented	in	this	lecture	

Reusability	

Einführung	in	die	Softwaretechnik	45	

Reusability	

Einführung	in	die	Softwaretechnik	46	

}  Old	dream	of	“mass-produced	software	components”	by	
McIlroy	at	NATO	conference	
}  Idea:	Mimic	engineering	
}  However,	cf.	pitfalls	of	confusing	product	and	plan,	see	first	
lecture	

}  	Other	(equally	problematic)	common	analogy:	Software	
as	LEGO	

}  Although	these	visions	are	both	problematic,	reuse	is	a	
major	concern	in	software	design	

Goals	of	Reuse	

Einführung	in	die	Softwaretechnik	47	

}  Timeliness:	Having	less	software	to	develop	means	that	we	
can	build	it	faster		

}  Decreased	maintenance	effort:	If	someone	else	is	responsible	
for	the	software	he	or	she	is	also	responsible	for	its	evolution	
}  And	he	does	so	once	for	all	clients:	Fix	once,	profit	many	times	

}  Redundancy	is	a	source	of	inconsistency.	Reuse	can	avoid	
redundancy.	

}  Reliability	
}  If	software	is	reused	many	times	more	effort	is	put	into	software	

quality	
}  Efficiency	

}  By	the	same	arguments	as	reliability	
}  Consistency	
}  Investment	

What	should	we	reuse?	

Einführung	in	die	Softwaretechnik	48	

}  Reuse	of	personnel	
}  E.g.	avoid	loss	of	know-how	by	transferring	software	engineers	
from	project	to	project	

}  Reuse	of	designs	and	specifications	
}  Notion	of	design/specification	as		software	product	
independent	of	implementation	is	dubious,	cf.	self-
documentation	principle	

}  The	implementation	is		the	(detailed)	design	
}  With	continuity,	direct	mapping	etc.,	the	distinction	between	
reusing	modules	and	reusing	designs	tends	to	fade	away	
}  High-Level	Design	(e.g.	class	diagram)	is	like	a	table	of	contents	of	the	
detailed	design	(implementation)	

What	should	we	reuse?	

Einführung	in	die	Softwaretechnik	49	

}  Design	Patterns	
}  =	architectural	ideas	applicable	across	a	broad	range	of	
application	domains		

}  An	important	form	of	architecture	reuse	which	we	will	study	in	
detail	later	on		

}  Source	Code	
}  We	want	to	reuse	something	that	“runs”,	since	eventually	we	
want	to	run	programs	(“Bubbles	don’t	crash!”)	

Reuse	of	abstracted	modules	

Einführung	in	die	Softwaretechnik	50	

}  If	we	want	to	reuse	source	code,	in	what	form	should	we	
reuse	it?	

}  Reusing	it	in	the	form	of	the	actual	source	text	is	
problematic	
}  It	removes	information	hiding:	Users	may	rely	on	
implementation	details	only	visible	by	studying	the	source	text	

}  Developers	of	software	distributed	in	source	text	may	be	
tempted	to	violate	modularity	rules	

}  What	we	want	to	reuse	are	abstracted	modules	
}  Software	described	through	a	well-defined	interface	that	hides	
implementation	details	

}  The	software	may	still	be	distributed	in	source	text;	the	
difference	is	the	primary	source	of	information	about	it	

Reuse	and	Patterns	

Einführung	in	die	Softwaretechnik	51	

}  A	reusable	piece	of	code	abstracts	over	certain	patterns	
(patterns	in	the	general	sense,	not	design	patterns)	

}  Conversely,	a	program	contains	opportunities	for	reuse	if	
it	contains	patterns	
}  Can	be	formalized	as:	The	Kolmogorov	complexity	of	the	
program	is	smaller	than	the	program	

}  Let’s	look	at	some	typical	patterns	of	redundancy	
(patterns	of	patterns	J)	and	ways	to	abstract	over	them	

Reuse:	Constants	

Einführung	in	die	Softwaretechnik	52	

}  Sometimes	the	same	number/string/…	shows	up	many	
times	in	a	program	(“magic	number”)	
}  A	source	of	inconsistency,	if	the	number/string	may	change		

}  E.g.,	the	value	of	Pi	is	unlikely	to	change	J	

}  No	documentation	of	the	intention	of	the	number/string/…	
}  Reuse	by	defining	a	constant	

}  Can	reuse	the	constant	in	all	places	where	it	is	needed	
}  Can	change	in	one	place	
}  Can	give	meaningful	name	to	constant	

Reuse:	Common	Subexpressions	

Einführung	in	die	Softwaretechnik	53	

}  Code	may	contain	the	same	subexpressions	in	many	
places,	e.g.,	5*89+3	or	x+y/2
}  Must	keep	track	of	scoping	rules	if	variables	are	involved	

}  Can	abstract	over	pattern	by	using	a	local	variable	
}  If	the	subexpression	performs	side-effects	(I/O,	mutation,	
…)	can	abstract	over	pattern	using	procedure/method	

}  This	may	or	may	not	yield	more	efficient	code	
}  Depending	on	how	smart	the	compiler	is	

}  More	importantly,	it	will	typically	improve	the	code	
}  Gives	the	idea	behind	the	common	subexpression	a	name	
}  Less	redundancy,	…	

Reuse:	Almost	common	subexpressions	

Einführung	in	die	Softwaretechnik	54	

}  Code	contains	similar,	but	not	identical	subexpressions	
}  Differ	only	in	the	value	of	“first-class”	expressions	

}  Can	abstract	over	pattern	using	procedural	abstraction	
(or,	methods,	functions,	lambdas,	…)	

}  E.g.	average(x,y)	=	x+y/2	instead	of	computing	averages	
in	place	

}  Gives	abstraction	a	name,	avoids	redundancy,	…	

Reuse:	Almost	common	subexpressions	

Einführung	in	die	Softwaretechnik	55	

}  What	if	the	expressions	differ	in	the	subroutines	they	
call?	
}  Nothing	changes	in	a	language	with	first-class	subroutines;	can	
abstract	over	these	calls	and	turn	them	into	parameters	
}  E.g.	functional	languages	

}  In	OO	languages,	this	problem	has	given	rise	to	design	patterns	
such	as	“strategy”	and	“template	method”	which	we	will	
discuss	in	detail	later	on	

	

Reuse:	Almost	common	subexpressions	

Einführung	in	die	Softwaretechnik	56	

}  What	if	the	expressions	differ	in	the	types	they	use?	
}  E.g.	quicksort	algorithm	on	integers	vs.	quicksort	on	strings	

}  Can	use	generic	types!	
}  List<T>	sort<T>(List<T>	in,	Comparator<T>	cmp)	{…}	

	

Reuse:	Similar	class	definitions		

Einführung	in	die	Softwaretechnik	57	

}  Can	factor	out	commonalities	in	common	superclass	
}  Late	binding	and	possibility	to	extend	fields/methods	
allow	one	to	specialize	in	powerful	ways	
}  However,	subtyping	limits	the	ways	how	a	subclass	can	be	
different	from	a	superclass	
}  “Liskov	Substitution	Principle”	à	SE	Design	Lecture	

}  However,	different	points	of	view	on	when	to	use	
inheritance	
}  “Scandinavian”	style	of	inheritance:	Mechanism	for	conceptual	
specialization,	driven	by	modeling	

}  “American”	style	of	inheritance:	Reuse	and	patch	code	

Some	patterns	are	hard	to	abstract	over,	though	

Einführung	in	die	Softwaretechnik	58	

Reuse	and	Efficiency	

Einführung	in	die	Softwaretechnik	59	

}  Abstract	designs	can	be	less	efficient	(in	terms	of	space/
time	behavior)	than	their	redundant	expansions	
}  “All	design	is	just	adding	more	levels	of	indirection”		
}  A	conflict	between	reuse	and	efficiency?	

}  Most	of	the	time	not	a	real	concern	
}  Compiler	techniques	remove	much	abstraction	overhead	

}  Inlining,	devirtualization,	tail-call	optimization,	partial	evaluation,	
staging,	…	

}  Cost	of	method/function	calling	rarely	the	main	bottleneck	
}  Only	a	fraction	of	the	code	is	performance-critical	anyway	

}  Can	be	a	concern	if	very	inefficient	abstraction	
techniques	are	used	
}  E.g.,	reflection	

Literature	

Einführung	in	die	Softwaretechnik	60	

}  Bertrand	Meyer,	Object-Oriented	Software	Construction,	
Prentice	Hall,	1997	[Chapter	3,	4]	

