

### Mathematisch-Naturwissenschaftliche Fakultät

Programmiersprachen und Softwaretechnik

Prof. Klaus Ostermann

Leitung des Seminars David Binder Ingo Skupin

# Kategorientheorie für Programmierer

Hausaufgabenblatt 5 - SS18

Tübingen, 13. Juni 2018

# Aufgabe 1: Lektüre

Für die nächste Sitzung lesen Sie bitte Kapitel 18 und schicken Ihre Fragen bis Dienstag Abend an uns. Ignorieren Sie dabei Abschnitte, die über *representable functors* sprechen, da diese erst später behandelt werden.

# Aufgabe 2: Äquivalenz der Adjunktionsdefinitionen

Gegeben sei folgende Adjunktion:

$$\mathcal{C} \xrightarrow{\frac{L}{L}} \mathcal{D},$$

also Funktoren  $L\colon \mathcal{C}\to \mathcal{D}$  und  $R\colon \mathcal{D}\to \mathcal{C}$  mit den natürlichen Transformationen  $\eta\colon I_{\mathcal{C}}\to R\circ L$  und  $\varepsilon\colon L\circ R\to I_{\mathcal{D}}$ , sodass folgende Diagramme kommutieren:

$$L \xrightarrow{L\eta} LRL \qquad R \xrightarrow{\eta_R} RLR$$

$$\downarrow^{\mathrm{id}} \downarrow_{\varepsilon_L} \qquad \downarrow^{\mathrm{id}} \downarrow_{R\varepsilon}$$

$$L \xrightarrow{L} R$$

Außerdem seien

$$\varphi_{c,d} \colon \operatorname{Hom}_{\mathcal{D}}(Lc,d) \to \operatorname{Hom}_{\mathcal{C}}(c,Rd)$$

$$f \mapsto Rf \circ \eta_c$$

und

$$\psi_{c,d} \colon \operatorname{Hom}_{\mathcal{C}}(c,Rd) \to \operatorname{Hom}_{\mathcal{D}}(Lc,d)$$
  
 $g \mapsto \varepsilon_d \circ Lg$ 

gegeben. Zeigen Sie, dass  $\varphi_{c,d} \circ \psi_{c,d} = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(c,Rd)}$  und  $\psi_{c,d} \circ \varphi_{c,d} = \mathrm{id}_{\mathrm{Hom}_{\mathcal{D}}(Lc,d)}$  für alle Objekte c aus  $\mathcal{C}$  und d aus  $\mathcal{D}$  gilt. Zeigen Sie außerdem, dass  $\varphi$  und  $\psi$  natürlich Transformationen zwischen den Profunktoren  $\mathrm{Hom}_{\mathcal{D}}(L-,-)\colon \mathcal{C}^{\mathrm{op}}\times\mathcal{D}\to\mathcal{S}et$  und  $\mathrm{Hom}_{\mathcal{C}}(-,R-)\colon \mathcal{C}^{\mathrm{op}}\times\mathcal{D}\to\mathcal{S}et$  sind, wobei diese Profunktoren durch

$$\operatorname{Hom}_{\mathcal{D}}(L-,-)(c,d) = \operatorname{Hom}_{\mathcal{D}}(Lc,d)$$
  $\operatorname{Hom}_{\mathcal{C}}(-,R-)(c,d) = \operatorname{Hom}_{\mathcal{C}}(c,Rd)$ 

#### auf Objekten und

```
\operatorname{Hom}_{\mathcal{D}}(Lf,g)(h) \coloneqq \operatorname{Hom}_{\mathcal{D}}(L-,-)(f^{\operatorname{op}},g)(h) = g \circ h \circ Lf \in \operatorname{Hom}_{\mathcal{D}}(Lc',d') \quad \text{für } h \in \operatorname{Hom}_{\mathcal{D}}(Lc,d)
\operatorname{Hom}_{\mathcal{C}}(f,Rg)(h) \coloneqq \operatorname{Hom}_{\mathcal{C}}(-,R-)(f^{\operatorname{op}},g)(h) = Rg \circ h \circ f \in \operatorname{Hom}_{\mathcal{C}}(c',Rd') \quad \text{für } h \in \operatorname{Hom}_{\mathcal{C}}(c,Rd)
```

auf Morphismen  $f \colon c' \to c \text{ und } g \colon d \to d'$  definiert sind.

# Aufgabe 3: Adjunktionen - Beispiele

Seien  $\mathbb Z$  und  $\mathbb R$  die die ganzen beziehungweise die reellen Zahlen, jeweils als preorder-Kategorien mit ihren natürlichen Ordnungen. Zeigen Sie, dass für die Auf- beziehungs Abrundefunktionen  $\lceil \cdot \rceil, \lfloor \cdot \rfloor \colon \mathbb R \to \mathbb Z$  und die natürliche Injektion  $i \colon \mathbb Z \to \mathbb R$  gilt, dass  $\lceil \cdot \rceil$  links- und  $\lfloor \cdot \rfloor$  rechtsadjungiert zu i ist.

# Aufgabe 4: Adjunktionen – Beispiele 2

Sei  $\mathcal{C}$  eine beliebige Kategorie mit Initial- und Terminalobjekten. Sei außerdem 1 die Kategorie mit nur einem Objekt und nur einem Morphismus (der Identität auf dem Objekt). Zeigen Sie, dass man das Initial- und das Terminalobjekt jeweils durch eine Adjunktion zwischen diesen beiden Kategorien darstellen kann.