
Software	
 Construction	
 
Techniques���
Writing	
 Good	
 Code	
 

Paolo G. Giarrusso���
Prof. Klaus Ostermann 



In this seminar, you will learn about 
• software construction 
• giving presentations 
• writing short papers on the topic 
• writing reviews on other papers 

2 



Seminar	
 Topic	
 

3 



A	
 core	
 problem	
 of	
 writing	
 
software,	
 in	
 the	
 abstract	
 
• Software projects can be too complex 
• Successful software projects must control that 
complexity 
• Otherwise, programs will be too complex to 
modify successfully 

4 



Good	
 Code	
 &	
 Programmers	
 

• Many programs are equivalent… 
• … but not for humans… 
• What’s the difference? 
• How can you write code that others enjoy 
reading, rather than suffer through? 

5 



Prototypical	
 Example:	
 Code	
 
Duplication	
 
• If you need the same code twice, you can 
•  copy-n-paste 
•  abstract the code into reusable form (e.g. a routine) 

• Both “work” 
• Copy-n-paste will cause lots of pain down the 
road 
• Why? 
•  More effort during maintenance 
•  More effort during understanding 

•  Is abstraction always worthwhile? 

6 



Coding	
 Religions	
 

• Gurus and zealots… 
• … evangelize you to follow mantras… 
• … and promise salvation (aka silver bullets). 
���
In fact 
• few absolute rules 
• tradeoffs to understand 

7 



Tradeoff	
 Example:	
 Automation	
 

• Automate tasks that can be automated to save 
developers’ time 
• But… 

8 



9 

https://xkcd.com/1319/ 



Tradeoff	
 Example:	
 Automation	
 

• Possible Solution: Automate tasks that need be 
done consistently 
•  Building software 
• New releases 
•  Testing… 

10 



Tradeoffs,	
 Therefore…	
 

• Learn to debate the reasons of practices 

11 



Software	
 Construction	
 Versus���
Software	
 Engineering	
 
• Software construction is one task in creating 
software (software engineering) 
•  The down-to-Earth part 
• Often neglected 
•  The part that happens in every project 

• So we will not focus on development process, 
requirements 

12 



Sources	
 

The Pragmatic Programmer 
• Lots of programming wisdom 
• Guru-like, but mostly right 
• Enjoyable read 
• Short & a bit chaotic 
 

13 



Sources	
 

Code Complete 
• Complete & systematic 
• Tries hard to be evidence-based 
 

14 



Sources:	
 Further	
 material	
 

Caveat: 
• Both are OOP-based 
• These books don’t necessarily assume a CS 
education 

15 



Some	
 (Possible)	
 Topics	
 

• High-Quality Routines (CC Ch. 6) 
• Cohesion, naming, size, parameters… 

• Organizing Statements (CC Part IV) 
•  Including the debate on goto 

• Self-documenting code (CC Ch. 32) 
• Programming Character (CC Ch. 33) 
• Code reviews (CC Ch. 21) 

16 



Seminar	
 Format	
 

17 



Seminar	
 Goals	
 

• Learning about the topic 
• Here, about programming 

• Learning how to do scientific work 
• Here, reflect upon programming advice, don’t trust it 

blindly 

18 



Format	
 

Scientific work consists of: 
• Read & understand 
• Think & create 
• Write & reflect 
• Discuss & convey 

19 



Seminar…	
 

• Read & understand: ✓ 
• Think & create: ✗ 
• Write & reflect: ✓ 
• Discuss & convey: ✓ 

20 



…vs	
 thesis	
 work	
 

• Read & understand: ✓ 
• Think & create: ✓ 
• Write & reflect: ✓ 
• Discuss & convey: mostly ✗

• Yet, a seminar can be useful preparation for 
thesis work. 

21 



Tentative	
 Schedule	
 

1.  Kick-off 
2.  (Topic Choice?) 
3.  Preparation on Writing 
4.  Preparation on Presentations 
5.  … your presentations 

22 



Grading	
 

• 40% talk 
• 40% paper 
• 20% reviews & participation 

23 


