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The expression problem describes a fundamental trade-off in program design: Should a program’s primary

decomposition be determined by the way its domain objects are constructed (łfunctionalž decomposition), or

by the way they are destructed (łobject-orientedž decomposition)? We argue that programming languages

should not force one of these decompositions on the programmer; rather, a programming language should

support both ways of decomposing a program in a symmetric way, with an easy translation between these

decompositions. However, current programming languages are usually not symmetric and hence make it

unnecessarily hard to switch the decomposition.

We propose a language that is symmetric in this regard and allows a fully automatic translation between

łfunctionalž and łobject-orientedž decomposition. We present a language with algebraic data types and

pattern matching for łfunctionalž decomposition and codata types and copattern matching for łobject-

orientedž decomposition, together with a bijective translation that turns a data type into a codata type

(łdestructorizationž) or vice versa (łconstructorizationž).We present the first symmetric programming language

with support for local (co)pattern matching, which includes local anonymous function or object definitions,

that allows an automatic translation as described above. We also present the first mechanical formalization of

such a language and prove i) that the type system is sound, that the translations between data and codata types

are ii) type-preserving, iii) behavior-preserving and iv) inverses of each other. We also extract a mechanically

verified implementation from our formalization and have implemented an IDE with direct support for these

translations.
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1 INTRODUCTION

Should you fold over the input or unfold over the output? Should a program be structured
according to how its input is constructed or how its output is destructed? Should one use algebraic
data types with pattern matching as available in functional languages or classes and methods as
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available in object-oriented languages? Should a program be extensible in its set of constructors or
in its set of destructors?

For instance, the standard map functions on infinite streams can be written by pattern-matching
on the constructors of the input (assuming that streams are defined as a data type with a ::
constructor):

map(f,x :: xs) = f(x) :: map(f,xs)

or it can be written by copattern-matching [Abel et al. 2013] on the destructors of the output
(assuming that streams are defined as a codata type with a head and tail destructor):

map(f,s).head = f(s.head)

map(f,s).tail = map(f,s.tail)

In the constructor-centric first version, it is easy to add new consumers (pattern-matching functions)
but hard to add new producers (constructors); in the destructor-centric version it is the other way
around. This trade-off has been discussed in many forms [Cook 1990; Krishnamurthi et al. 1998;
Reynolds 1975] and is today widely known as the expression problem [Wadler 1998], which has
resulted in a long string of works on programming techniques and programming language design
to support extensibility of both constructors and destructors.

In this work, we aim to analyze the problem on a more fundamental level. We want to understand
the exact relation between the two different decompositions described by the expression problem.
These decompositions essentially encapsulate a data- and codata-centric view, respectively. The goal
of this work is to increase our understanding of the relation between those different decompositions
and their impact on language design, programming, and language implementation. A promising
first step in that direction is an analysis of two traditional global program transformations, de-
functionalization [Danvy and Nielsen 2001; Reynolds 1972] and refunctionalization [Danvy and
Millikin 2009]. These transformations change the modularity and extensiblity of a program (for
instance, defunctionalization collects all function definitions in a program and arranges them into
a single pattern match). Also, defunctionalization changes a destructor (function application) of a
codata type (functions) - into constructors of a data type.
In this work, we propose generalizations of defunctionalization and refunctionalization, which

we call constructorization and destructorization. They refer to the transformation of a constructor-
centric data type definition and the program that uses it into a destructor-centric codata type
definition together with a transformed program (destructorization), or vica versa (constructo-
rization). Furthermore, we use the term transposition and the verb transpose to refer to either
constructorization or destructorization.

We also present a programming language that is symmetric in its support for these decompositions
in the sense that any program in constructor-centric form can be mechanically transformed into
a unique destructor-centric program and vice versa, and that these transformations are total,
type-preserving, behavior-preserving, and inverses of each other. We consider the features of our
language, particularly the transformations, to be generally useful in practice, but we are focusing
on their use to enable us to explore the relation between the different decompositions.
We believe that a programming language which is symmetric in this sense is relevant for

programmers, language designers, and language implementers:

• It is relevant for programmers because non-symmetric languages encourage or force one
of the decompositions. For instance, in Haskell 98 (without GADTs), constructors of an
algebraic data type data Exp a always return an expression of type Exp a, but functions
(=destructors) can have types like Int -> Exp Int for a type constructor Exp, which
has led programmers to use (typed) Church encodings of data types instead of algebraic data
types to profit from the more powerful type system on the destructor (in this case: function)
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side [Carette et al. 2007]. Object-oriented languages strongly encourage a destructor-based
decomposition into objects; a constructor-based decomposition requires awkward designs
such as the łvisitor patternž [Gamma et al. 1995]. For constructor-based design implemented
with pattern matching, various features such as linear pattern matching or guards have been
developed with no obvious counterpart in destructor-based designs, and vice versa. Even in
languages with direct support for codata [Abel et al. 2013] (to be discussed in detail later in
the related work section), symmetry is destroyed by intermingling codata types and function
types. These asymmetries needlessly restrict the design choices of the programmer for purely
technical reasons that have nothing to do with the problem domain. Another reason why
symmetry is important to programmers is that it enables a new class of programming tools
that is based on automatically translating between the decompositions, as we will illustrate
with the prototypical IDE which we implemented for our language.
• It is relevant for language designers because the symmetry can be used to identify language
design łholesž (features that are available for one decomposition but not the other). There
is also a conceptual łtwo for the price of onež economy: By identifying a feature for the
constructor side to be the exact counterpart to a feature on the destructor side, the design
becomes simpler and meta-theoretic properties for one side may by construction carry over to
the other side. We also believe that this work can clarify the relation between object-oriented
languages and functional data type-oriented languages [Cook 2009].
• It is relevant for language implementers due to the possibility of using the transformations be-
tween the decompositions as a compilation technique and hence realizing two corresponding
features with just one shared implementation. The transformation itself may also be a guide
on how to implement cross-compilers between functional and object-oriented languages in a
systematic way.

Concretely, this paper makes the following contributions:

• We present the first full symmetric programming language that allows invertible destructori-
zation and constructorization.
• We have fully formalized the language in the Coq theorem prover and mechanically verified
that the language is type-sound. We have implemented the transposition algorithms in
Coq and have proven that they are total, preserve typing and behavior, and are inverses of
each other. All łdifficultž parts of the proofs have been mechanically verified in Coq, with
a few rather obvious but very laborious to mechanize ‘plumbing’ proofs left as ordinary
paper proofs.1 The Coq proofs, which consumed by far the largest part of the authors’ time
investment, constitute more than 60 kloc.
• We synthesize a mechanically verified implementation of the language from our Coq formal-
ization and have integrated it into a browser-based IDE that supports constructorization and
destructorization.

Related work is discussed in detail later in the paper, but we want to discuss two related pre-
vious lines of work here. Rendel et al. [2015] presented an extension of defunctionalization and
refunctionalization to arbitrary codata (not just functions). In Rendel et al.’s work, the transfor-
mations only work on a language that allows only top-level definitions such that programs can
be arranged in a kind of matrix, which can then be transposed to flip the decomposition. Our
transformation extends Rendel et al.’s algorithm for a łfullž programming language that allows
block structure/nesting/local definitions. Another line of work that bears a superficial similarity to
this paper is work on compiling codata to data (and/or vice versa) [Downen et al. 2019; Laforgue
and Régis-Gianas 2017]. We defer to the related work section for details, but for now we want

1The sources for the formalization and implementation were submitted as supplementary material.
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to emphasize that these works aim for a compositional encoding of codata in terms of data (or
vice versa) that therefore does not change the modularity or extensibility of the program, whereas
we are interested in global transformations that switch the modular structure in the sense of the
expression problem.

The remainder of this paper is structured as follows: In section 2, we present background on de-
and refunctionalization and describe the language design issues that need to be addressed to turn
these techniques into total transposition algorithms. In section 3 we present an informal overview
of the solution to the problems discussed in section 2. Section 4 presents a case study to illustrate
how the language works in terms of a useful and realistic example. We also use the case study to
present the IDE which we have developed for this work. Section 5 contains the formalization of the
language on which we base our development. The presentation of the transposition algorithms is
contained in section 6. Section 7 presents the theorems that we have proven about our formalization.
Section 8 discusses implications and future work, and section 9 presents related work. We conclude
in section 10.

2 PROBLEM STATEMENT

Constructorization and destructorization are extensions and generalizations of defunctionalization
[Danvy and Nielsen 2001; Reynolds 1972] and refunctionalization [Danvy and Millikin 2009],
respectively. These traditional whole-program transformations turn programs with higher-order
functions (that is, with function application as destructors of functions) into first-order programs
with constructors of algebraic data types and pattern matching (defunctionalization) or back
(refunctionalization) and as such are a useful step towards constructorization and destructorization.
In this section, we revisit these transformations and describe the problems in turning them into
transpositions of a full-fledged programming language.

To illustrate defunctionalization, consider this program in Haskell-like syntax which maps two
anonymous functions over a list.

map :: (Int -> Int) -> [Int] -> [Int]

map f xs = ... f (head xs) ...

let x=7

y=12

in map (\z.z+x) (map (\z.z*y) [1,2,3])

The traditional way to defunctionalize a function type is to first turn all local function declarations
of that type into top-level definitions by lambda lifting [Johnsson 1985]. The values for the free
variables in the function bodies are passed as parameters to these functions. Top-level declarations
need a name, hence we need to synthesize/invent two new names in our example, plus and mult.

plus x = \z.z+x

mult y = \z.z*y

let x=7

y=12

in map (plus x) (map (mult y) [1,2,3])

The next step is to create an algebraic data type with one constructor for each top-level function,
whereby each constructor has a parameter for the free variable in the original function body. A
special apply function is created, which pattern-matches on the synthesized algebraic data type
to determine the correct function body for that call and to get access to the values that would
have otherwise been stored in the closure. Function definitions are replaced by invocations of the
matching synthesized constructor, and function applications are replaced by invocations of the
first-order apply function.
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data Int2Int = Plus Int | Mult Int

apply :: Int2Int -> Int -> Int

apply (Plus x) z = z+x

apply (Mult x) z = z*y

map :: Int2Int -> [Int] -> [Int]

map f xs = ... apply f (head xs) ...

let x=7

y=12

in map (Plus x) (map (Mult y) [1,2,3])

Refunctionalization tries to turn first-order data types back into functions, i.e., reverse the
process of defunctionalization, but the attempt to make it a total function and the inverse of
defunctionalization fails for several reasons:

a) It is only a partial function in traditional functional languages because it is not clear what
to do if there is more than one pattern match on the argument type of the function type to
be refunctionalized [Danvy and Millikin 2009]. In our example, imagine a second function
pattern matching on Int2Int, such as

isPlus :: Int2Int -> Bool

isPlus (Plus _) = True

isPlus (Mult _) = False

This extended program can no longer be refunctionalized.
b) Lambda-lifting requires the synthesis of new names not in the original program, which then

show up as constructor names in the refunctionalized program, and it is not obvious how to
make that process invertible. In our example, we had to invent the names plus and mult. If
we would refunctionalize and then defunctionalize, it is not clear how to guarantee that we
get the same names back.

c) It is not clear how to łundož the lambda-lifting because the defunctionalized program contains
no information about which functions ought to be de-lambda-lifted. In our example, it is
not possible to reconstruct from the defunctionalized program whether plus and mult were
originally defined locally or as top-level functions.

d) If the apply function is changed such that the top-level operation is no longer a pattern match
on its first argument, it is not clear how to deal with the function body when refunctionalizing
the program.

e) Finally, if the arguments of the newly generated constructors are changed to be not just
variable names but general expressions, it is not clear how to preserve the evaluation order
when refunctionalizing the program. For instance, if we change (Plus x) to Plus (x + 1)

in the invocation of map above, a naive refunctionalization would refunctionalize the first
argument of the first map call to (\z.z+(x+1)), thereby changing the order of evaluation by
moving the addition inside a λ-abstraction.2

Previous work by Rendel et al. [2015] has addressed problem a) by generalizing function types to
general codata types with copattern matching [Abel et al. 2013]. Function types are a special case of
codata types with a single apply destructor. The case of multiple pattern matches on algebraic data
types can be solved with codata types by synthesizing one destructor per pattern match; something
that was not possible with traditional functions due to the inherent limitation of functions having
only one destructor. However, Rendel et al. [2015] left open a solution to problems b)-e): their
proposal assumed a language in which all definitions and (co)pattern matches were on the level of

2We assume a call-by-value language in the remainder of this paper.
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top-level functions only, that is, no local definitions are possible. In the next section, we review
how Rendel et al. have addressed a) and describe our novel solutions for b)-e), which together
enable fully invertible transposition for a full functional language with local pattern matching and
copattern matching (including λ-abstraction).

3 OVERVIEW

We now give an informal overview of how we addressed problems a) to e) as outlined in the
previous section. We address

a) by generalizing functions to codata
b) by adding names to matches and comatches
c) by distinguishing local and global constructor and destructor names
d) by adding consumer and generator functions
e) by adding let-like functionality to match/comatch

The next subsections describe these ideas in detail. Since all features we describe apply dually to
both the data and codata features of the language, we use the prefix x to abstract over which side
of the duality we refer to by replacing a concrete (possibly empty) prefix by x. For instance, an xtor
is a constructor or a destructor, xpattern matching is pattern matching or copattern matching, and
so forth.
We propose a language with a symmetric data and codata types with (co)pattern matching,

together with first-order functions.

3.1 Generalizing Functions to Codata

While most functional languages support data types and function types, we support data types and
codata types, which are strictly more general than function types. This means that even though
we do not mention function types, lambda abstraction, and the application of a lambda-defined
function to an argument explicitly in the formalization in section 5, these could be provided by
desugarings into the more fundamental codata type declarations, copattern matches and destructor
applications, respectively.

Functions are the special case of codata with just one destructor (typically called apply). In our
example, we can define such a codata type for functions from Int to Int as follows:

codata Int2Int where

apply(Int): Int

This works similarly to how function types are provided in Java, where lambda abstractions are
objects which implement the Function<T,R> interface, which provides the R apply(T t) method.

Codata types are instantiated by copattern matching, and destructors can be called on values of
codata types using dot notation. The following example shows how to apply the function f on its
argument head xs by calling the destructor apply on f, and a copattern match that mimics the
λ-abstraction \z.z+x.

map :: Int2Int -> [Int] -> [Int]

map f xs = ... f.apply(head xs) ...

...

in map (comatch Int2Int with

apply(z) => z+x) ...

If we consider the example of the additional isPlus function from the previous section, de-
structorization can now be restored by adding an additional destructor to the codata type and
corresponding destructor implementations in the copattern matches for that codata type. The result
of destructorizing Int2Int after adding the isPlus function to the constructorized program from
the introduction looks as follows:
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codata Int2Int

apply(Int): Int

isPlus() : Bool

let x=7

y=12

in map (comatch Int2Int with

apply(z) => z + x

isPlus() => true)

(map (comatch Int2Int with

apply(z) => z * y

isPlus() => false)

[1,2,3])

3.2 Adding Names to Matches/Comatches

We solve the problem of synthesizing names for new constructors/destructors by requiring pro-
grammers to give a unique name to each (co)pattern match in the program. For instance, here we
give the name Plus to the first comatch. This name is then turned into the constructor name Plus.
In order to visually separate the name of the comatch from the codata type on which we comatch,
we use the keyword on.

... in map (comatch Plus on Int2Int with

apply(z) => z+x ) ...

Strictly speaking, this step is not required when writing code, since these names are only required
when transposing the program. Instead, it would suffice to generate them on the fly during the
transformation process by either prompting the user or having a generator for fresh names. However,
names specified in the program text have the distinct advantage that these names will be turned
into constructor or destructor names, respectively; autogenerated names decrease the readability
of the generated program.

3.3 Local and Global Xtor Names

When destructorizing a data type, it is not obvious whether a constructor invocation should be
turned into an inlined copatternmatch (which would lead to code duplication if the same constructor
is invoked multiple times) or whether it should be turned into a function call of a function that
does the copattern match (which would avoid code duplication if the same constructor is invoked
multiple times). Dually, the same problem arises for constructorization and destructor invocations.
To keep destructorization and constructorization total and inverses of each other, we distinguish
local names (denoted by names that start with an underscore _) from global names (names that do
not start with underscore). Names of generator and consumer functions (introduced in the next
subsection) will always be global, while names of matches and comatches will always be local.
Local xtors can only be invoked in one place in the program; transposing the corresponding

xdata type leads to an inlined xmatch of the opposite polarity. Conversely, global xtors can be
invoked in many places in the program; transposing the corresponding xdata type yields a top-level
first-order function definition containing the xmatch, which is called in all places that used to
invoke the xtor. All xtors that result from local xpattern matches are local, thereby guaranteeing
that a transposition roundtrip will again yield the same program.
In our running example, the Plus and Mult constructors are local constructors.

data Int2Int where

_Plus(Int)

_Mult(Int)

Let us consider an extension of the data type with another constructor that is global (in this case
for the identity function):
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data Int2Int where

_Plus(Int)

_Mult(Int)

Identity()

...

apply (Identity()) z = z

If we destructorize Int2Int, then the invocations of _Plus and _Mult are turned into the copattern
matches we started with. Since the Identity constructor is global, a top-level function

Identity = comatch Identity on Int2Int with

apply(z) => z

is generated and this function is invoked in all places that invoked the Identity constructor.

3.4 Consumer and Generator Functions

As we have seen in the previous subsection, global xtors are turned into top-level functions
containing an xpattern match. However, in the next round of transposition, how can we know
which top-level functions must be turned back into a global xtor? And what do we do about top-level
functions that do not contain a top-level xpattern match in their body?
We solve both problems by partitioning functions into three different kinds:

• Ordinary functions are not affected by transposition (except that their bodies are transposed).
• Consumer functions are syntactically restricted to contain a top-level pattern match on their
first argument. Destructorization turns consumer functions into global destructors; the cases
of the pattern match are distributed to the corresponding copattern matches.
• Generator functions are syntactically restricted to contain a top-level copattern match. Con-
structorization turns generator functions into global constructors; the cases of the copattern
match are distributed to the corresponding pattern matches.

All three kinds of functions are not first-class, i.e. they cannot be passed as an argument or returned
as a value. In our running example, apply is a global destructor of Int2Int, hence constructorization
turns apply into a consumer function (denoted by the keyword cfun).

cfun Int2Int: apply(z : Int) : Int :=

Plus(x) => z+x

Mult(x) => z*x

Transposing Int2Int once more turns the consumer function apply back into a global destructor,
as intended.
In a similar fashion, the additional Identity constructor from subsection 3.3 would now be

destructorized into a generator function (denoted by the keyword gfun).

gfun Identity() : Int2Int :=

apply(z) => z

Regarding ordinary functions without a top-level xpattern match, in our language we keep them
as a separate construct because we consider it to be notationally and conceptually convenient to
distinguish them from consumer and generator functions. However, for completeness sake we want
to point out that they can be easily desugared using a Unit data type (with a single no-argument
constructor, as usual): An ordinary function with body e becomes a consumer function of type
Unit with e in the single pattern match case (a similar desugaring to generator functions would
also be possible).

3.5 Let-like Functionality for Match/Comatch

Let us now reconsider the example from the introduction, changing (Plus x) to Plus (x + 1)

in the invocation of map. In our CBV language, x + 1 is evaluated when the constructor call is
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evaluated. However, if we were to destructorize the constructor invocation to comatch plus

on Int2Int {apply(z)=> z+(x+1)}, then the x + 1 would be evaluated only when the apply

destructor is invoked.
We solve this problem by extending both the pattern match and the copattern match construct

with a name binding construct similar to an enclosing let binding. These bindings are evaluated
when the xpattern match itself is evaluated, which restores the desired evaluation order.

In our example, we add a corresponding binding to the comatch:

...comatch Plus on Int2Int using x:=x+1 with

apply(z) => z+x

Adding these annotations to xmatches instead of simply using let-bindings around them corre-
sponds to the idea that xmatches are essentially a type of local gfun of cfun and thus should be
thought of as closures. Furthermore, since they need to be closed in order to apply transpositions
on them, this removes the need to search for all relevant lets around them which are required for
this precondition to hold.

4 CASE STUDY

The symmetric design of our language gives programmers the possibility to view the domain they
are modelling from different angles, depending on the decompositions that are chosen for the
domain objects occurring in the program. Being able to switch decompositions makes it more
convenient to change or add functionality, and gives new insights into the structure of the program.
In order to illustrate this point, we present a case study which is inspired by Danvy et al. [2011], who
inter-derive reduction-based and reduction-free negational normalization functions. The original
case study used de- and refunctionalization at several places to change the perspective on the
program, which was done manually. By contrast, we can leverage the symmetric design of our
language to perform corresponding changes (i.e. transposition) mechanically. Thus, this case study
focuses on parts of the original case study by Danvy et al. [2011] which hinged on the use of de-
and refunctionalization. The goal is to obtain a program which computes the negation normal
form of a boolean formula with conjunction, disjunction and negation by repeatedly searching
for a redex of the form ¬(ϕ ∧ ψ ), ¬(ϕ ∨ ψ ) or ¬¬ϕ and replacing it by ¬ϕ ∨ ¬ψ , ¬ϕ ∧ ¬ψ and
ϕ, respectively.3 We will semi-mechanically derive this program iteratively after first manually
writing a program which searches for one such redex. After (mechanical) constructorization, it only
requires small modifications to adapt this code into a reduction-based evaluator which evaluates a
boolean formula to its negation normal form. This approach highlights how the development of
the final solution was greatly simplified by switching our view on the program by changing to a
different decomposition, which was aided by the use of a mechanical transformation.

Our representation of the domain is given in Figure 1 and will not change during the subsequent
development. The rest of the code, which is subject to the transformation, is given in Figure 3. As a
first step, we write the functions search,4 searchPos and searchNeg, which search for the leftmost
outermost redex in an expression. The function search starts the search by calling searchPos

with the initial continuation; searchPos searches for the first negation, recursively building up
a continuation along the way, and passes the computation to searchNeg after the first negation
has been encountered. The Found data type represents the result of searching for a redex in an
expression.

3A simpler, łbig-stepž style implementation of this problem is of course possible and also described by Danvy; here we

focus on the łsmall-stepž reduction-style solution because it is well-suited to illustrate the features of our language.
4The search function is actually the result of CPS-transforming and then simplifying a direct-style function; the simplifi-

cation amounts to only applying a continuation when a value is found.
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data Expr where

EVar(Identifier)

ENot(Expr)

EAnd(Expr, Expr)

EOr(Expr, Expr)

data Redex where

RedNot(Expr)

RedAnd(Expr, Expr)

RedOr(Expr, Expr)

data Value where

ValPosVar(Identifier)

ValNegVar(Identifier)

ValAnd(Value, Value)

ValOr(Value, Value)

cfun Value:asExpr() : Expr :=

ValPosVar(id) => EVar(id)

ValNegVar(id) => ENot(EVar(id))

ValAnd(e1,e2) => EAnd(e1.asExpr(), e2.asExpr())

ValOr(e1,e2) => EOr(e1.asExpr(), e2.asExpr())

cfun Redex:eval() : Expr :=

RedNot(e) => e

RedAnd(e1,e2) => EOr(ENot(e1), ENot(e2))

RedOr(e1,e2) => EAnd(ENot(e1), ENot(e2))

Fig. 1. The definitions of expressions, redexes, values, the embedding of values in expressions, and the

reduction of immediate redexes will not change during the subsequent steps.

Fig. 2. The IDE provides functionality to automatically switch the decomposition.

Following the approach of Danvy et al. [2011], we constructorize the codata type Value2Found,
since it is known that applying defunctionalization (which we generalize to constructorization)
results in interesting semantic artifacts, bringing us closer to an abstract machine representation.
This results in the transformed program in Figure 4.

Under this decomposition we realize that Context is an appropriate name for the new data
type. For example, the term _OrCnt1(e,_AndCnt2(v,_BaseCnt())) corresponds to the evaluation
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data Found where codata Value2Found where

FoundValue(Value) apply(Value) : Found

FoundRedex(Redex)

/* Start the search with the trivial continuation */

fun search(e : Expr) : Found :=

e.searchPos(comatch BaseCnt on Value2Found with apply(val) => FoundValue(val))

/* Searching for a negation */

cfun Expr:searchPos(cnt : Value2Found) : Found :=

EVar(id) => cnt.apply(ValPosVar(id))

ENot(e) => e.searchNeg(cnt)

EAnd(e1,e2) => e1.searchPos(

comatch AndCnt1 on Value2Found using e2:=e2, cnt:=cnt with

apply(v1) => e2.searchPos(

comatch AndCnt2 on Value2Found using v1:=v1, cnt:=cnt with

apply(v2) => cnt.apply(ValAnd(v1, v2))))

EOr(e1,e2) => e1.searchPos(

comatch OrCnt1 on Value2Found using e2:=e2, cnt:=cnt with

apply(v1) => e2.searchPos(

comatch OrCnt2 on Value2Found using v1:=v1, cnt:=cnt with

apply(v2) => cnt.apply(ValOr(v1, v2))))

/* Searching a redex under a negation */

cfun Expr:searchNeg(cnt : Value2Found) : Found :=

EVar(id) => cnt.apply(ValNegVar(id))

ENot(e) => FoundRedex(RedNot(e))

EAnd(e1,e2) => FoundRedex(RedAnd(e1,e2))

EOr(e1,e2) => FoundRedex(RedOr(e1,e2))

Fig. 3. The main part of the code before constructorization.

context v ∧ (□ ∨ e ), where v already is a value but e might contain further redexes (note that
Contexts compose from the inside outwards, similarly to a stack). We therefore rename the data
type and its constructors, as seen in Figure 5. The apply function takes a context, and returns the
next redex if a value is plugged into the hole, we therefore rename it to findNext. We also extend
the definition of the constructor FoundRedex to also return the enclosing context of the redex, and
modify the searchNeg function accordingly.
In order to evaluate an expression to normal form we need one additional function which

substitutes an expression (in our case, the result of reducing a redex) into an evaluation context, as
seen in Figure 6. Now it is easy to give the definition of the evaluation function.

Bringing the data type Context back into destructor form results in the program shown in Figure 7,
which we might not have originally written, since it corresponds to the addition of a destructor to
an existing codata type. Adding an additional cfun to the constructorized version was easy.

Since the transpositions can be performed mechanically instead of doing them by hand, as it was
done in the original case study, this development can easily be recreated in an IDE which provides
the necessary capabilities, as showcased in Figure 2. Such an IDE was created in the authors’ lab.
Most prominently, the IDE provides switching the decomposition by the touch of a button, as well
as the following features:

• (Partial) type inference for the language.
• Syntactic sugar for codata types corresponding to functions, and the corresponding lambda
abstractions.
• Moving local matches / comatches to the toplevel.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 30. Publication date: January 2020.



30:12 David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann

data Value2Found where cfun Value2Found:apply(v : Value) : Found :=

_BaseCnt() _BaseCnt() => FoundValue(v)

_AndCnt1(Expr, Value2Found) _AndCnt1(e,cnt) => e.searchPos(_AndCnt2(v,cnt))

_AndCnt2(Value, Value2Found) _AndCnt2(v',cnt) => cnt.apply(ValAnd(v',v))

_OrCnt1(Expr, Value2Found) _OrCnt1(e,cnt) => e.searchPos(_OrCnt2(v,cnt))

_OrCnt2(Value, Value2Found) _OrCnt2(v', cnt) => cnt.apply(ValOr(v',v))

fun search(e : Expr) : Found :=

e.searchPos(_BaseCnt())

cfun Expr:searchPos(cnt : Value2Found) : Found :=

EVar(id) => cnt.apply(ValPosVar(id))

ENot(e) => e.searchNeg(cnt)

EAnd(e1,e2) => e1.searchPos(_AndCnt1(e2,cnt))

EOr(e1,e2) => e1.searchPos(_OrCnt2(e2,cnt))

cfun Expr:searchNeg(cnt : Value2Found) : Found :=

EVar(id) => cnt.apply(ValNegVar(id))

ENot(e) => FoundRedex(RedNot(e))

EAnd(e1,e2) => FoundRedex(RedAnd(e1,e2))

EOr(e1,e2) => FoundRedex(RedOr(e1,e2))

Fig. 4. The main part of the code after constructorization.

• Adding a constructor / destructor to a data type / codata type by completing a template
generated from the switched decomposition, see Figure 8.
• Changing the signature of an existing constructor or destructor, by changing a similar
template.

The fact that our language is designed with these automatic transformations in mind enables rapid
experimentation and prototyping, instead of requiring a manual, and error-prone, transformation
done on paper. Since we also generalize the transformations Danvy et al. used, we also implicitly
extend their approach to interderiving semantic artifacts. For instance, the addition and transforma-
tion of the substitute function in our case study would not have been possible in their approach
due to their usage of traditional refunctionalization.

5 FORMALIZATION

In this section, we present the language on which we define the transposition algorithms.

5.1 Syntactic Conventions

We use the usual convention that a horizontal bar over a syntactic category or metavariable
indicates a (possibly empty) list of occurrences of its argument, hence x is shorthand notation
for x1, . . . ,x |x | . As usual, we abuse syntax and let list notation for composite expressions, such as

e : T , stand for e1 : T1, . . . , en : Tn (where n = |e : T |). We also use list notation for the repeated

application/conjunction of a judgement over a list. For instance, a typing judgement Γ ⊢ e : T stands
for the sequence of judgements Γ ⊢ e1 : T1 . . . Γ ⊢ en : Tn .

5.2 Syntax

The syntax of programs is given in Figure 9. A full program consists of a set of data type declarations,
a set of codata type declarations, and a set of function declarations, which can be ordinary functions,
consumer functions, or generator functions. Staying close to the representation that we chose in
our Coq formalization, we represent the binding structure of expressions using de Bruijn indices.
Hence, variables are just natural numbers indicating the distance to the occurrence of the binding
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data Context where data Found where

_EmptyCtx() FoundValue(Value)

_AndCtx1(Expr, Context) FoundRedex(Redex, Context)

_AndCtx2(Value, Context)

_OrCtx1(Expr, Context)

_OrCtx2(Value, Context)

cfun Expr:searchNeg(ctx : Context) : Found :=

EVar(id) => ctx.findNext(ValNegVar(id))

ENot(e) => FoundRedex(RedNot(e), ctx)

EAnd(e1,e2) => FoundRedex(RedAnd(e1,e2), ctx)

EOr(e1,e2) => FoundRedex(RedOr(e1,e2), ctx)

Fig. 5. The changed part of the code after renaming Value2Found to Context and apply to findNext and

modifying FoundRedex.

cfun Context:substitute(e : Expr) : Expr :=

_EmptyCtx() => e

_AndCtx1(e', ctx) => ctx.substitute(EAnd(e,e'))

_AndCtx2(v, ctx) => ctx.substitute(EAnd(v.asExpr(), e))

_OrCtx1(e', ctx) => ctx.substitute(EOr(e, e'))

_OrCtx2(v, ctx) => ctx.substitute(EOr(v.asExpr(), e))

fun evaluate(e : Expr) : Value :=

match _ on search(e) with

FoundValue(v) => v

FoundRedex(r,ctx) => evaluate(ctx.substitute(r.eval()))

Fig. 6. The new functions added after changing names

codata Context where

findNext(Value) : Found

substitute(Expr) : Expr

cfun Expr:searchPos(ctx : Context) : Found :=

EVar(id) => ctx.findNext(ValPosVar(id))

ENot(e) => e.searchNeg(ctx)

EAnd(e1,e2) => e1.searchPos(

comatch AndCtx1 on Context using e2:=e2, ctx:=ctx with

findNext(v1) => e2.searchPos(

comatch AndCtx2 on Context using v1:=v1, ctx:=ctx with

findNext(v2) => ctx.findNext(ValAnd(v1, v2))

substitute(ex) => ctx.substitute(EAnd(v1.asExpr(), ex)))

substitute(ex) => ctx.substitute(EAnd(ex, e2)))

EOr(e1,e2) => e1.searchPos(

comatch OrCtx1 on Context using e2:=e2, ctx:=ctx with

findNext(v1) => e2.searchPos(

comatch OrCtx2 on Context using v1:=v1, ctx:=ctx with

findNext(v2) => ctx.findNext(ValOr(v1, v2))

substitute(ex) => ctx.substitute(EOr(v1.asExpr(), ex)))

substitute(ex) => ctx.substitute(EOr(ex, e2)))

Fig. 7. The final result of our case study

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 30. Publication date: January 2020.



30:14 David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann

Fig. 8. Adding a constructor to a data type by completing a generator function template in the other

decomposition.

P ::= D,E, F ,G,H Program

D ::= data T where Ctor Data type

Ctor ::= C (T ) Constructor

E ::= codata T where Dtor Codata type

Dtor ::= d (T ) : T Destructor

F ::= fun f (T ) : T := e Function

G ::= cfun T :d (T ) : T := C ⇒ e Consumer Function

H ::= gfun C (T ) : T := d ⇒ e Generator Function

e ::= x Variable (de Bruijn index)

| C (e ) Constructor and gfun calls

| e .d (e ) Destructor and cfun calls

| f (e ) Function call

| match d on e using e with C ⇒ e Pattern match

| comatch C on T using e with d ⇒ e Copattern match

| let e in e Let expression

v ::= C (v ) Constructor and gfun calls

| comatch C on T using v with d ⇒ e Copattern match

T ::= type names

C ::= constructor, gfun or comatch names (local or global)

f ::= function names

d ::= destructor, cfun or match names (local or global)

Fig. 9. Formal syntax

construct. For example, the expression let x := e in (let y := e ′ in f (x ,y)) is represented in our
formalization as let e in (let e ′ in f (1, 0)). For the same reason, the bindings in using clauses are
just a list of expressions. In our example programs, we will continue to use ordinary variable names
instead of de Bruijn indices to improve readability, at the cost of a small deviation between the
examples and the formal syntax. Also due to de Bruijn variables, the cases and cocases of (co)pattern
matches list only the name of the xtor to match on instead of binding names for the arguments of
the xtor.

We use the convention that type names, constructor names, and generator function names start
with uppercase letters, whereas function names, destructor names, and consumer function names
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* Dt Data type names defined in the program
* CoDt Codata type names defined in the program
* ∀T ∈ Dt : Ctor(T ) Constructors of type T
* ∀T ∈ Dt : Cfun(T ) Consumer functions for type T
* ∀T ∈ CoDt : Dtor(T ) Destructors of type T
* ∀T ∈ CoDt : Gfun(T ) Generator functions for type T
* Fun (Ordinary) function signatures

∀ f ∈ Fun : Body( f ) Body of function f

∀ (_:d (_) : _) ∈ Cfun(−) : Cases(d ) Body of consumer function d
∀ (C (_) : _) ∈ Gfun(−) : Cocases(C ) Body of generator function C

Fig. 10. Global sets to query the program. Typechecking expressions depends on the starred sets only, that is,

only on declarations.

start with lowercase letters. Names in C and d may be prepended with an underscore to denote
local names as described in subsection 3.3.
To avoid cluttering the definitions, we assume the program to be a global constant. In the

remaining definitions, we query the global program via the sets defined in Figure 10. The sets are
mostly self-explanatory, hence we refer to the Coq code for a formal definition and instead suggest
to consider the example in Figure 12, whose representation in terms of these set functions can be
seen in Figure 13, as illustration. The only noteworthy aspect of these sets is that Gfun(T ) and
Ctor(T ) have been set up in such a way that they have the same codomain, such that we can form
the set union Gfun(T ) ∪ Ctor(T ). The same holds for Cfun(T ) and Dtor(T ).

Together, the first seven items of the bottom half of Figure 10 contain all the static information
of a program which is necessary to typecheck expressions.

5.3 Typing and Reduction

Typechecking of expressions is defined in Figure 11. Expressions are typechecked in the context
of all function signatures, meaning that arbitrary recursion, including non-termination, between
functions is possible.5 While the rules for let bindings, xtors and the different kinds of function
calls are pretty standard, the rules for xmatches are slightly more involved. Firstly, the rule for
matches is set up to ensure that every constructor occurs in exactly one case of the match. While
it would be possible to allow non-exhaustive pattern matches, we have restricted ourselves to
exhaustive pattern matches for the sake of simplicity.6 Secondly, it is important to note that the
bodies inside the case clauses are typechecked using only the variables bound by the binding lists
and the variables provided by the respective case, i.e. it ensures that matches are closed terms.
These remarks apply equally to comatches.

Typechecking a full program involves typechecking of function bodies in the context of the types
of the arguments, as usual. Typechecking consumer and generator functions is a straightforward
extension of typechecking local pattern (copattern) matches. Program well-formedness furthermore
involves entirely unsurprising checks that all type names that are used are actually defined, that
generator and consumer functions have a branch for each xtor of the corresponding (co)data type

5 Inductive and coinductive types are often used in conjunction with termination/productivity checks (e.g. Atkey and

McBride [2013]), but for our purposes those checks are orthogonal to this work.
6Destructorization, for example, would translate an exception arising from an incomplete pattern match into the invocation

of a destructor on a copattern match with a missing cocase. Semantic preservation under transposition might therefore still

be possible.
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Expression Typing: Γ ⊢ e : T

lookup(x , Γ) = T

Γ ⊢ x : T
(T-Var)

Γ ⊢ e1 : T1 Γ,T1 ⊢ e2 : T2

Γ ⊢ let e1 in e2 : T2
(T-Let)

f (T ) : T ′ ∈ Fun

Γ ⊢ e : T

Γ ⊢ f (e ) : T ′
(T-Fun)

C (T ′) ∈ Ctor(T ) ∪ Gfun(T )

Γ ⊢ e : T ′

Γ ⊢ C (e ) : T
(T-Ctor/Gfun)

d (T ′) : T ′′ ∈ Dtor(T ) ∪ Cfun(T )

Γ ⊢ e : T Γ ⊢ e ′ : T ′

Γ ⊢ e .d (e ′) : T ′′
(T-Dtor/Cfun)

Γ ⊢ e : T ′′′ Γ ⊢ e ′ : T T ∈ Dt

∀ (C (T ′) ∈ Ctor(T )). ∃i . C = Ci ∧T ′′′,T ′ ⊢ e
′′
i : T ′′

Γ ⊢ match d on e ′ using e with C ⇒ e ′′ : T ′′
(T-Match)

Γ ⊢ e : T T ′ ∈ CoDt

∀ (d (T ′′) : T ′ ∈ Dtor(T )). ∃i . d = di ∧ T ,T ′′ ⊢ ei : T
′

Γ ⊢ comatch C on T ′ using e with d ⇒ e ′ : T ′
(T-Comatch)

[see text ]

⊢ P OK
(Wf-Prog)

Evaluation contexts

E ::= □ | C (v,□, e ) | □.d (e ) | v .d (v,□, e ) | f (v,□, e ) | let □ in e

| match d on □ using e with C ⇒ e

| match d on v using (v,□, e ) with C ⇒ e

| comatch C on T using (v,□, e ) with d ⇒ e

Small-step Operational Semantics: e → e ′

e1 → e2

E[e1]→ E[e2]
(E-Congr)

Body( f ) = e

f (v ) → e[v]
(E-Fun) let v in e → e[v] (E-Let)

match . . . on C (v ) using v ′ with . . . ,C ⇒ e, . . . → e[v][v ′] (E-Match)

C ⇒ e ∈ Cases(d )

C (v ).d (v ′) → e[v][v ′]
(E-Cfun)

d ⇒ e ∈ Cocases(C )

C (v ).d (v ′) → e[v][v ′]
(E-Gfun)

(comatch on T using v with . . . ,d ⇒ e, . . . ).d (v ′) → e[v][v ′] (E-Comatch)

Fig. 11. Typing and small-step operational semantics.
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(exhaustiveness), and that names in local xpattern matches are globally unique, as explained in
section 3.2. We have omitted the formal definition of the rule Wf-Prog from the paper because it is
not very interesting; the full definition is of course part of our Coq formalization.

Figure 11 also gives the small-step operational semantics formulated with evaluation contexts.7

Our language uses call-by-value evaluation, so arguments to functions and terms bound in let
expressions and binding lists are evaluated first. Substitution is particularily simple, since it only
needs to be defined for values, which are closed terms.8 Continuing the example from above, if
e is a value, then we write the evaluation of the let expression as let v in (let e ′ in f (1, 0)) →
(let e ′ in f (1, 0))[v] = let e ′ in f (v, 0). If the body of the function f is the expression e , then we
use the suggestive notation f (v ) → e[v] to indicate the substitution of the arguments into the
body of the function.

The expressions in the cocases of a comatch do not have to be evaluated to values in order for the
comatch to be a value. This corresponds to not evaluating expressions under a lambda abstraction,
when the function type is generalized to arbitrary codata.

5.4 Type Soundness

For the type soundness of our language (progress and preservation), refer to the overview of our
Coq results (subsection 7.1).

6 TRANSPOSITION ALGORITHMS

We implemented transposition as a two-stage process. In a first step a new program skeleton,
consisting only of the type signatures, is computed from the given program and the (co)data typeT
chosen to be transposed. In the new program skeleton, the chosen data type becomes a codata type,
or vice versa, with its constructor or destructor signatures collected from the original program,
and there are certain changes to the function signatures. The reason to have this stage separate is
that it allows us to formulate the statement that typechecking is preserved under transposition.
In the second step the new function bodies are computed from the old program. For this, we use
constructorization and destructorization functions for expressions in a given program.
In subsection 6.1 we present the running example for the presentation of the algorithm. In

subsections 6.2 and 6.3 we present the first and second stage of the algorithm, respectively.

6.1 Example

We will use the example of Figure 12 to illustrate the transposition algorithm. Its formal representa-
tion can be found in Figure 13. Constructorizing the codata type Light of the program P on the left
yields the program P ′ on the right. Inversely, destructorizing the data type Light of P ′ yields P .

6.2 Stage 1: Computing the New (Co-)Data Types and Function Signatures

The new program skeleton consists of data types, codata types, and the signatures of consumer
functions, generator functions, and regular functions, which we obtain from the original program
by the changes described in Figure 14. Signatures of regular functions always remain unchanged.
The function localCases(T ) will return the signatures of all local matches for typeT in a program,
i.e. their names, each together with a list of the types in the bindings list and the return type.
localCocases does the same for local comatches.

7 The Coq formalization uses standard congruence rules instead of evaluation contexts because we found congruence rules

to be easier to formalize.
8The technicalities of the proper recursive definition of substitution are part of the Coq formalization.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 30. Publication date: January 2020.



30:18 David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann

This means that we remove Light from CoDt and add it to Dt and we set Dtor(Light) =
Gfun(Light) = ∅. Furthermore, with localCocases(Light) = {_BlueRed ()}, we obtain

Dt
′
=Dt ∪ {Light} = {Color, Light}

CoDt
′
=CoDt \ {Light} = ∅

Ctor
′(Light) =Gfun(Light) ∪ localCocases(Light)

={Const(Color), RedBlue()} ∪ {_BlueRed ()}

Cfun
′(Light) =Dtor(Light) = {color() : Color, next() : Light}.

Observe that the two transformations are entirely symmetric in this first stage; i.e. one can
exchange constructorization and destructorization, data type and codata type, consumer and
generator, as well as match and comatch, and the description remains the same.

6.3 Stage 2: Computing the New Function Bodies

We obtain the new function bodies from the original bodies by the transformations shown in
Figure 15. We refer to the result of constructorization of a program P as C[P], and to the destructo-
rization result asD[P]. We also use C andD for the constructorization and destructorization of
expressions, respectively, which we will define in the next paragraph. We denote the collection
of cocases for destructor d from all over the original program (i.e. from all generator functions
and all local comatches) as cocases(d ), and similarly the collection of cases for constructor c as
cases(c ). It is this collection step that makes the transformation a whole-program transformation,
as it requires searching through the entire program for the relevant (co)case bodies. In our running
constructorization example, new consumer functions color and next are added. For instance, the
cases of color are the following collected cocases(color):

color() => c

color() => red()

color() => blue()

which stem from the generator functions const, RedBlue and the local comatch _BlueRed, respec-
tively.

Light is a codata type

data Color where

Red()

Blue()

codata Light where

color() : Color

next() : Light

gfun Const(c : Color) : Light :=

color() => c

next() => Const(c)

gfun RedBlue() : Light :=

color() => Red()

next() =>

comatch _BlueRed on Light where

color() => Blue()

next() => RedBlue()

Light is a data type

data Color where

Red()

Blue()

data Light where

Const(Color)

RedBlue()

_BlueRed()

cfun Light:color() : Color :=

Const(c) => c

RedBlue() => Red()

_BlueRed() => Blue()

cfun Light:next() : Light :=

Const(c) => Const(c)

RedBlue() => _BlueRed()

_BlueRed() => RedBlue()

Fig. 12. Programs P (left) and P ′ (right).
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Light is a codata type

Dt = {Color}

CoDt = {Light}

Ctor(Color) = {Red(), Blue()}

Dtor(Light) = {color() : Color,

next() : Light}

Gfun(Light) = {Const(Color),

RedBlue()}

Cocases(Const) = {color() => c,

next() => Const(c)}

Cocases(RedBlue) = {color() => Red(),

next() => [. . .]∗}

Omitted code above (∗):

comatch _BlueRed on Light where

color() => Blue()

next() => RedBlue()

Light is a data type

Dt′ = {Color, Light}

CoDt′ = ∅

Ctor′(Color) = {Red(), Blue()}

Ctor′(Light) = {Const(Color),

RedBlue(),

_BlueRed ()}

Cfun′(Light) = {color() : Color,

next() : Light}

Cases′(color) = {Const(c)=> c

RedBlue()=> Red()

_BlueRed()=> Blue()}

Cases′(next) = {Const(c)=> Const(c)

RedBlue()=> _BlueRed()

_BlueRed()=> RedBlue()}

Fig. 13. The formal representations of P (left) and P ′ (right).

Constructorization

Dt′ ≔ Dt ∪ {T }

CoDt′ ≔ CoDt \ {T }

Ctor(S )′ ≔



Ctor(S ) S , T

localCocases(T )
∪ Gfun(T ) S = T

Dtor(S )′ ≔

Dtor(S ) S , T

∅ S = T

Gfun(S )′ ≔

Gfun(S ) S , T

∅ S = T

Cfun(S )′ ≔



Cfun(S ) S , T
{
(d (T ′) : T ′′) ∈ Dtor(T )

���
isGlobal(d )

} S = T

Fun′ ≔ Fun

Destructorization

Dt′ ≔ Dt \ {T }

CoDt′ ≔ CoDt ∪ {T }

Ctor(S )′ ≔

Ctor(S ) S , T

∅ S = T

Dtor(S )′ ≔



Dtor(S ) S , T

localCases(T )
∪ Cfun(T ) S = T

Gfun(S )′ ≔



Gfun(S ) S , T
{
C (T ′) ∈ Ctor(T )

���
isGlobal(C )

} S = T

Cfun(S )′ ≔

Cfun(S ) S , T

∅ S = T

Fun′ ≔ Fun

Fig. 14. The algorithm for computing the new typing information, i.e. the new skeleton, when transposing

with type T . In this and the following figures, the isGlobal and isLocal predicates check whether a name is

global or local, respectively.

Constructorization/Destructorization of Expressions. Constructorization C of an expression in a
given program and with respect to a type T is shown in Figure 16. For constructorization, the
interesting cases are some of those expressions that are related to the type T to be constructorized,
specifically:

• Comatches generating T , which become local constructor calls.
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Constructorization C

Cocases( f )′ ≔

C[Cocases( f )] f < Gfun(T )

∅ f ∈ Gfun(T )

Cases( f )′ ≔

C[Cases( f )] f < Cfun(T )′{
C[cocases(d )]

��� (d (Tp ) : Tr ) ∈ Dtor(T ), isGlobal(d )
}

f ∈ Cfun(T )′

Body( f )′ ≔ C[Body( f )] for all f

DestructorizationD

Cocases( f )′ ≔

D[Cocases( f )] f < Gfun(T )′{
D[cases(C )]

��� C (Tp ) ∈ Ctor(T ), isGlobal(C )
}

f ∈ Gfun(T )′

Cases( f )′ ≔

D[Cases( f )] f < Cfun(T )

∅ f ∈ Cfun(T )

Body( f )′ ≔ D[Body( f )] for all f

Fig. 15. The algorithm for computing the new function bodies when transposing with type T . Here Cfun(T )

(resp.Gfun(T ) is the set of consumer functions (resp. generator functions) of the old program, while Cfun(T )′

(resp. Gfun(T )′) is the set of consumer functions (generator functions) in the new program.

• Generator function calls for generator functions generating T , which become global con-
structor calls.
• Global destructor calls to destructors of T , which become consumer function calls.

But the most important case is that for local destructor calls e .d (e ) (for a destructor of T ). Such
a local destructor call is translated to a local match. The cases for that match are collected from
the comatches and generator functions generating T , fetching all the cocases cocases(d ) for the
destructor d under consideration. This is the same algorithm as for the collection of the cases of
the new consumer functions described above.
The cases for destructors e .d (e ) and generator function calls C (e ) of T look like congruence

cases; we list them above the horizontal line because the meaning of those expression changes:
The destructor call e .d (. . .) is turned into a consumer function call C[e].d (. . .), which happens to
have the same syntax (because it allows a more economical presentation of the language). Similarly,
the generator function call C (. . .) is turned into a constructor call C (. . .) that happens to have the
same syntax.
Destructorization D of expressions (Figure 17) works analogously, with matches turned into

local destructor calls, consumer function calls turned into global destructor calls, global constructor
calls turned into generator function calls, and local constructor calls turned into comatches with
the cocases collected among the matches and consumer functions. There is one slight technical
complication in the destructorization part: To check which case of the function definition applies
to a match expression, we need to know the type of the expression on which we match. We use
the notation e : T to refer to that type, which would in an actual implementation be stored and
remembered during typechecking. The alternative would have been to make D type-directed
instead of syntax-directed, but we considered this alternative to be more readable.
Due to local destructor or local constructor calls where the algorithm needs to collect the

(co)cases from all over the original program, constructorization/destructorization of expressions
is a whole-program transformation itself. Especially, this means that it must take as inputs not
only the expression and the type to be transposed, but also the program with respect to which the
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C[e .d (e )] := C[e].d (C[e]), if d ∈ Dtor(T ) and isGlobal(d ) Destructor

C[e .d (e )] := match d on C[e] using C[e] with C[cocases(d )],
if d ∈ Dtor(T ) and isLocal(d )

C[C (e )] := C (C[e]), if C ∈ Gfun(T ) Generator function

C[comatch C on T using e : T with . . .] := C (C[e]) Comatch

C[x] := x Variable

C[C (e )] := C (C[e]) Constructor

C[e .d (e )] := C[e].d (C[e]), if d < Dtor(T ) Destructor

C[f (e )] := f (C[e]) Function

C[C (e )] := C (C[e]), if C < Gfun(T ) Generator function

C[e .d (e )] := C[e].d (C[e]) Consumer function

C

[
match d on e using e with C ⇒ e

]
:= Match

match d on C[e] using C[e] with C ⇒ C[e]

C

[
comatch C on S using e with d ⇒ e

]
:= Comatch

comatch C on S using C[e] with d ⇒ C[e], for S , T
C[let e1 in e2] := let C[e1] in C[e2] Let

Fig. 16. Constructorization of expressions in a given program w.r.t. a codata type T . Interesting cases are

above the horizontal line, congruence cases below.

D[C (e )] := C (D[e]), if C ∈ Ctor(T ) and isGlobal(C ) Constructor

D[C (e )] := comatch C on T using D[e] with d ⇒ X ,

if C ∈ Ctor(T ) and isLocal(C )

D[e .d (e )] := D[e].d (D[e]), if d ∈ Cfun(T ) Consumer function

D[match d on e using e with C ⇒ e] :=D[e].d (D[e]), if e : T Match

D[x] := x Variable

D[C (e )] := C (D[e]), if C < Ctor(T ) Constructor

D[e .d (e )] := D[e].d (D[e]) Destructor

D[f (e )] := f (D[e]) Function

D[C (e )] := C (D[e]) Generator function

D[e .d .e (]) := D[e].d (D[e]), if d < Cfun(T ) Consumer function

D

[
match d on e using e with C ⇒ e

]
:= Match

match d onD[e] using D[e] with C ⇒D[e] if e : S and S , T

D

[
comatch C on S using e with d ⇒ e

]
:= Comatch

comatch C on S using D[e] with d ⇒D[e]
D[let e1 in e2] := let D[e1] in D[e2] Let

Fig. 17. Destructorization of expressions in a given program w.r.t. a data type T . Interesting cases are above

the horizontal line, congruence cases below.
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transformation happens, i.e. the program that contains the term. To simplify the development of
our Coq implementation, we have therefore split it into three parts: 1.) lifting of (co)matches to top-
level functions, 2.) actual program transposition, where we produce top-level generator/consumer
functions potentially marked as local (i.e., to be inlined), and 3.) inlining of these marked-as-
local functions as (co)matches. This way we have an improved separation of concerns and can
implement core constructorization/destructorization of expression functions that do not require
the full program as input and are simple folds over the given expression, replacing local xtor calls
by local function calls to be inlined later as (co)matches.

7 RESULTS

We have proven the theorems listed in this section, the first part concerning the soundness of
our language and the second concerning the correctness of our transformations. The essential,
difficult, parts have been mechanically verified in Coq. We did not mechanize proofs of some of the
straightforward, but tedious, well-formedness properties of the resulting program which do not
relate to well-typedness or totality proper.9

7.1 Type Soundness

We have proven the type soundness of our language in Coq by the usual preservation and progress
theorems.

Theorem 7.1 (Preservation). For all expressions e , if Γ ⊢ e : T in some program P with P OK

and e → e ′, then Γ ⊢ e ′ : T .

Theorem 7.2 (Progress). For all programs P with P OK and expressions e , if Γ ⊢ e : T , then either

e → e ′, or e is a value.

Furthermore, we have implemented algorithmic functions implementing the typing and evalua-
tion relations and proven their correctness and completeness with respect to the inductive relations
given here. In particular, this shows that the typing and small-step reduction relations are decidable.

7.2 Correctness of the Transformations

For the following, we fix a typeT which is used for the transposition.We furthermore assume that the
inputs are suitable for the transformations, i.e. that T is a data type if we perform destructorization
and a codata type if we perform constructorization.

Theorem 7.3 (Transposition preserves typing). If e is any expression in the original program P

(with P OK) such that Γ ⊢ e : T holds (in P ), then Γ ⊢ C[e] : T holds in C[P]. Similarly, Γ ⊢D[e] : T
holds inD[P].

Theorem 7.4 (Transposition is total). If a program P is well-formed (P OK), then transposition

will result in a well-formed program P ′ (P ′ OK).

Theorem 7.5 (Transposition preserves reduction relation). If expression e which is a part

of a program P (with P OK) reduces to e ′ (in P), then C[e] reduces to C[e ′] in C[P]. LikewiseD[e]
reduces toD[e ′] in D[P].

Theorem 7.6 (Transpositions are mutual inverses). If P OK, then constructorization and

destructorization are mutual inverses on all (co)data types defined in P (up to the ordering of signatures,

function definitions, or (co)cases).

9All Coq results are summarized in the file Results.v in the supplementary material, where we also give explanations or

non-mechanized proofs for these tedious admitted parts.
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Programs in our language can be naturally thought of as consisting of sets of these signatures,
definitions, and co(cases), thus their order does not matter for typechecking or the reduction
relation.10 We have to point out that the mutual inverses property depends on our de Bruijn
representation of variables; for a language with ordinary variable names, the property holds only
modulo α-equivalence.

8 OUTLOOK

We propose several avenues for follow-up research. We intend to improve the practical applicability
of our current work, contribute to the design process of programming languages in a fundamental
way, and to bolster the theoretical underpinnings of our language. Regarding the latter, we are
interested in (a) generalizing our approach to languages with more elementary features, like first-
class continuations, from which we may obtain our present language features as specializations,
and (b) to bring our approach to the type level and beyond.

Symmetric Programming Environment. On the practical side, we have developed a prototype
of a visual programming environment which allows programmers to switch between the data
and codata sides, and to do so with an important feature present that is usually expected from a
programming language, namely block structure i.e. local definitions. Our prototype already has
some of the features expected of a modern IDE, like (semi-)automatic refactorings, and we intend
to develop these features further to make it more useful in practice. Once there is a more general
language including e.g. first-class continuations, the catalogue of interesting refactorings may
further increase.

Functional vs Object-Oriented Languages. We believe that our work can contribute to reconciling
the tension between object-oriented and functional languages. Previous attempts to combine these
paradigms have led to non-orthogonal language designs with overlap between language features.
Programming with codata is, arguably, the essence of object-oriented programming [Cook 2009];
we believe that our language can be seen as the first truly symmetric and orthogonal language
design that combines the ideas of both paradigms; total and inverse transposition is the constructive
proof of the symmetry.

Program Matrices and PL Design. The matrix formalism approach to de/refunctionalization was
first explored by Rendel et al. [2015] (based on the relation to the expression problem drawn there,
and thus also in the tradition of earlier matrix representations [Cook 1990]). Our work did not
explicitly employ this kind of formalism, but still, our mental image of the transformations is
strongly influenced by the matrix idea.11 We think it is possible to formalize our work in terms of
matrices, but a key difference to prior work is that not everything has global scope anymore: The
matrices would need to be enhanced with additional constraints that represent the possible locality
restrictions of constructors or destructors. The matrix formalism is close to how we envision the
symmetric programming environment. Further, as was hinted at in the introduction, we hope to
exploit dualities for PL design, and such an explicit two-dimensional representation of programs
can potentially help us better understand the design space of programming languages. We hope
that this way one can avoid design mistakes, such as the above mentioned non-orthogonal design
found in previous attempts at combining the functional and object-oriented paradigms. To bring

10 All (co)pattern matches are exhaustive and non-overlapping, therefore such reordering cannot affect any property relating

to them.
11 For instance, our Coq proof of the program transpositions being mutual inverses amounts to reducing this problem to

matrix transpose being involutive.
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this idea to fruition it might also be instructive to try to combine it with the more general language
approach and/or more powerful type systems as outlined in the next paragraphs.

A Deeper Symmetry. Throughout this paper, we emphasized the symmetry inherent in our
language and the transformations defined on it. However, if łtwo-for-the-price-of-one economyž
[Wadler 2003] is what one hopes to gain from such symmetries, one could conceivably be far
more economical. Observe how constructors take in a certain sense the place of destructors, and
vice versa, when switching between the data and the codata sides. Now, compare the structure

of constructor signatures con(T a
c ) : Tc and of destructor signatures Td .des (T

a
d
) : To : On one side,

we have the constructed type Tc , and on the opposite side, the destructed type Td , which form a

dual pair, and on both sides we have lists of arguments (T a
c and T a

d
, respectively). But the output

type of destructors To lacks a counterpart on its opposite (the constructor) side. It is this lack
of a better symmetry that at all forced us to give two accounts, one for constructorization and
one for destructorization, or one for the data and one for the codata fragment, at least when
explicitly formalizing them in Coq. Even if the sides only differ slightly, the missing symmetry
and consequent structural difference is still glaringly obvious. Going back to the major theoretical
background for Abel et al.’s seminal work on copatterns [Abel et al. 2013], we can find a solution:
Zeilberger [2008] showed how we can learn from polarized logic (and more to the point, the two
meaning theories of logic, verificationist and pragmatist) to obtain a deeper symmetry. We believe
that our two language fragments can be obtained as specializations of Zeilberger’s positive and
negative fragments, and the same goes for our combined language and his Calculus of Unity.
The thus generalized versions of the constructor/destructor and match/comatch pairs are indeed
structurally identical, namely Zeilberger’s values and covalues (which specialize to constructors
and destructors), and continuations and expressions (which specialize to matches and comatches).
Going back to the specific issue we mentioned, covalues and continuations do not produce an
output, other than destructors and matches. Rather, they expect the remaining computation(s)
to be passed as (an) argument(s). Thus, Zeilberger’s choice of the name łcontinuationž here is
no accident: This general setting could allow us to better understand the relationship between
transposition-related symmetries and continuation-passing style versus direct-style programs (cf.
e.g. [Danvy and Nielsen 2001] [Danvy and Millikin 2009]). Related work on the symmetry between
greatest and least fixed point in linear logic [Baelde 2012] may also prove to be useful for exploring
the symmetry. For this it might be instructive to investigate how to port relevant ideas from linear
logic to polarized logic, similarly to what Zeilberger has done.

To the Type Level and Beyond. The data and codata languages and the transformations on them
as defined by Rendel et al. [2015] have already been extended to cover parametric polymorphism
[Ostermann and Jabs 2018]. One small step ahead could thus be the combination of this and our
present work to obtain a language with greater practical applicability. In the future, the approach
could be extended to even stronger type systems, especially ones that have a copy of the data
fragment/codata fragment duality at the type level and the appropriate transpose transformation.
More speculatively, it may also be interesting to study how such a kind of system could be realized
in a dependently typed setting, or more generally how one could devise something like the lambda
cube [Barendregt 1991] for it, or yet more generally, what the duality means for pure type systems.

Separate Compilation. Finally, transposition of programs offers a new perspective on separate
compilation. In most common module systems, extensibility is restricted to either constructors
or destructors. However, with our approach it seems possible to import a module and specify for
each type which is exported by this module whether it should be imported as data or as codata. In
the example from section 3, we could decide if we wanted to import Int2Int as a data type with
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two constructors (Plus and Mult) and one cfun (apply) or as a codata type with one destructor
and two gfuns. The first option would allow us to add a second cfun, e.g. isPlus, the second
option would permit extending with an additional new constructor, e.g. abs. If we add facilities to
add constructors or destructors to imported types, performing transposition of an imported type
also seems possible, e.g. we could import Int2Int as a data type, then add the isPlus cfun and
destructorize afterwards, which would result in a codata type with two cfuns as previously, but
with an added destructor, which is specified in the program which imports the type. Unfortunately,
the situation is less clear in the presence of local xtors and xmatches. We can identify two avenues
for an approach: We can choose to either export local xtors and xmatches or hide them. We consider
the first option to be undesirable, since this would expose local xtors, which may only be used
once. This means that in most cases, they may not be used in the importing program at all, thus
rendering them useless. Hiding local xtors results in a problem, however: If we assume that the
type T was exported as a data type with a (hidden) local constructor C and we added a cfun d to T ,
what would the result of C .d () be? We suggest that it might be possible that this problem can be
avoided by specifying translation functions which can be used when a local xtor is encountered. A
detailed analysis of such an approach is topic for further research.

9 RELATED WORK

We mainly focus on related work not already discussed in the previous sections.

Defunctionalization. Defunctionalization as a technique to eliminate higher-order functions to
make control flow (combined with CPS transformation) explicit goes back to Reynolds’s classic
essay [Reynolds 1972]. Danvy and colleagues have shown how it can be more widely applied [Danvy
and Nielsen 2001], and in particular how it can be usefully combined with CPS transformations
to derive semantic artifacts. They also introduced the partial (!) inverse to defunctionalization,
refunctionalization [Danvy and Millikin 2009], and showed a similar relation to direct-style trans-
formation. Our case study in section 4 is inspired by their showcase of all these transformations
[Danvy et al. 2011].

Coinduction, Codata, and Copatterns. Coinduction and coinductive types are directly supported in
some languages such as Coq [Giménez 1996]. Coinductive types still define a data type in terms of
its constructors; the main difference to inductive data types is that the semantics changes (greatest
fixed point instead of least fixed points, guarded corecursion instead of structural recursion). The
modularity/extensibility of the program is not affected by the use of coinductive types. Codata
types were first introduced by [Hagino 1989] as an extension of ML. Since then, objects and classes
have been described coalgebraically [Jacobs 1995] and codata has been described as the essence of
object-oriented programming [Cook 2009]. Abel et al. [2013] proposed a language with both data
types/pattern matching and codata/copattern matching, which has inspired an implementation in
Agda. Abel et al.’s language is not symmetric in the sense we analyzed in this work because it mixes
two forms of codata: codata defined in codata types, and first-class functions. These two forms of
codata crucially depend on each other (a destructor with arguments is modeled as a no-argument
destructor that resolves to a function that expects the argument). Due to the interplay between
functions and codata, it is not obvious what destructorization and constructorization should mean
in this language.

Expression Problem. There is a long string of works on programming techniques and language
designs that allow simultaneous extensibility in the constructor and destructor dimension (see
related work section in [Oliveira and Cook 2012], for instance), usually by enabling a kind of
micro-modularity, where the implementation for each constructor/destructor combination can be a
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separate module that can be freely composed with other such modules. The aim of these works is
different from this one. Their goal is to enable extensibility and composability of both constructors
and destructors. Our goal is to provide a symmetric language where the extensibility dimension
can be switched with our transposition algorithms. There have also been some works that discuss
the relation between the data/codata duality and the expression problem. Lämmel and Rypacek
[2008] discusses a category-theoretic formulation of the duality between data and codata in terms
of the expression problem; however, that work is about semantic methods and not programming
language design. The most closely related work to ours is the one by Rendel et al. [2015], whose
relation to this work has been discussed in detail at the end of section 2.

Data/Codata Transformations. Downen et al. [2019] compile a language with data types into
one with codata types and vice versa, but their transformations are very different from ours. They
map data to codata via the visitor pattern, i.e., the result has a codata type with one destructor per
constructor in the original data type, and an additional codata type for the visitor. To translate
codata to data, they use what they refer to as tabulation: the resulting data type represents a table
of potential answers to the destructor observations. Laforgue and Régis-Gianas [2017] propose a
macro to support codata in OCaml, in which codata operations are reified as a data type and codata
types are encoded as dispatch functions on reified codata operations. The essential difference of
both works to ours is that the transformations of Downen et al. and Laforgue and Régis-Gianas are
compositional and hence do not change the extensibility of the program. Their aim is a compositional
encoding, not a change in the decomposition of the whole program.

Defunctionalization in Compilers. Defunctionalization is used as a compiler technique to achieve
different goals. In many cases, they remain opaque to the programmer since they do not add
new functionality, but are rather used for low-level optimizations. Examples of these kinds of
usage include Boquist and Johnsson [1996]’s work on optimizations for lazy functional languages.
Sometimes, they might also be employed to provide additional functionality, mainly first-class
functions, to a language. One such instance is explored by Grust et al. [2013]. Contrary to this, our
approach intends to make different decompositions of a program accessible to the programmer and
thus provide such transformations as a means to manipulate programs. Moreover, in this work the
transpositions are mainly a means to an end, i.e. providing a multi-faceted view of a program to
programmers.

10 CONCLUSIONS

We have presented the first full programming language with symmetric support for data and
codata and transposition algorithms that flip constructor-centric and destructor-centric program
decompositions. We have formalized the language and the transformations and have proven (with
most proofs mechanized in Coq) that the language is type-safe and that the transformations are type-
preserving, behavior-preserving, total, and inverses of each other. Our case study illustrates how
our transposition algorithms can be used, beyond their implications for modularity, to automatically
interderive algorithms and data structures that would otherwise require manual work/proof to
establish their equivalence. We have validated the language with an implementation extracted from
the formalization (which is hence provably correct), and have implemented an IDE which offers
the transformations proposed here as a refactoring tool for the programmer.
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