
Grokking the Sequent Calculus (Functional Pearl)

DAVID BINDER, University of Tübingen, Germany
MARCO TZSCHENTKE, University of Tübingen, Germany
MARIUS MÜLLER, University of Tübingen, Germany
KLAUS OSTERMANN, University of Tübingen, Germany

The sequent calculus is a proof system which was designed as a more symmetric alternative to natural de-
duction. The 𝜆𝜇�̃�-calculus is a term assignment system for the sequent calculus and a great foundation for
compiler intermediate languages due to its first-class representation of evaluation contexts. Unfortunately,
only experts of the sequent calculus can appreciate its beauty. To remedy this, we present the first intro-
duction to the 𝜆𝜇�̃�-calculus which is not directed at type theorists or logicians but at compiler hackers and
programming-language enthusiasts. We do this by writing a compiler from a small but interesting surface
language to the 𝜆𝜇�̃�-calculus as a compiler intermediate language.

CCS Concepts: •Theory of computation→ Lambda calculus; • Software and its engineering→ Com-
pilers; Control structures.

Additional KeyWords and Phrases: Intermediate representations, continuations, codata types, control effects

ACM Reference Format:
David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann. 2024. Grokking the Sequent Calculus
(Functional Pearl). Proc. ACM Program. Lang. 8, ICFP, Article 250 (August 2024), 31 pages. https://doi.org/10.
1145/3674639

1 Introduction
Suppose you have just implemented your own small functional language. To test it, you write the
following function which multiplies all the numbers contained in a list:

def mult(𝑙) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ 𝑥 ∗mult(𝑥𝑠) }
What bugs you about this implementation is that you know an obvious optimization:The function
should directly return zero if it encounters a zero in the list. There are many ways to achieve this,
but you choose to extend your language with labeled expressions and a goto instruction. This
allows you to write the optimized version:

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼) }
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼)) }

You used label 𝛼 {mult’(𝑙 ;𝛼)} to introduce a label 𝛼 around the call to the helper function mult’
which takes this label as an additional argument (we use ; to separate the label argument from
the other arguments), and goto(0;𝛼) to jump to this label 𝛼 with the expression 0 in the recursive

Authors’ Contact Information: David Binder, Department of Computer Science, University of Tübingen, Tübingen, Ger-
many, david.binder@uni-tuebingen.de; Marco Tzschentke, Department of Computer Science, University of Tübingen,
Tübingen, Germany, marco.tzschentke@uni-tuebingen.de; Marius Müller, Department of Computer Science, University
of Tübingen, Tübingen, Germany, mari.mueller@uni-tuebingen.de; Klaus Ostermann, Department of Computer Science,
University of Tübingen, Tübingen, Germany, klaus.ostermann@uni-tuebingen.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/8-ART250
https://doi.org/10.1145/3674639

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0003-1272-0972
HTTPS://ORCID.ORG/0009-0004-8834-2984
HTTPS://ORCID.ORG/0000-0002-0260-6298
HTTPS://ORCID.ORG/0000-0001-5294-5506
https://doi.org/10.1145/3674639
https://doi.org/10.1145/3674639
https://orcid.org/0000-0003-1272-0972
https://orcid.org/0009-0004-8834-2984
https://orcid.org/0000-0002-0260-6298
https://orcid.org/0000-0001-5294-5506
https://doi.org/10.1145/3674639

250:2 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

helper function. But since your language now has control effects, you need to reconsider how
you want to compile and optimize programs. In particular, you have to decide on an appropriate
intermediate language which can express these control effects. In this paper, we introduce you to
one such intermediate language: the sequent-calculus-based 𝜆𝜇�̃�-calculus. The result of compiling
the efficient multiplication function to the 𝜆𝜇�̃�-calculus is:

def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼, 𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩,mult’(𝑥𝑠 ;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)))}⟩

Here is how you read this snippet: Besides the list argument 𝑙 , the definition def mult(𝑙 ;𝛼) ≔ . . .
takes an argument 𝛼 which indicates how the computation should continue once the result of the
multiplication is computed (we again use ; to separate these two kinds of arguments). The helper
function mult’ takes a list argument 𝑙 and two arguments 𝛼 and 𝛽 ; the argument 𝛽 indicates where
the function should return to on a normal recursive call while𝛼 indicates the return point of a short-
circuiting computation. In the body of mult’ we use ⟨𝑙 | case {Nil ⇒ . . . ,Cons(𝑥, 𝑥𝑠) ⇒ . . .}⟩ to
perform a case split on the list 𝑙 . If the list is Nil, then we use ⟨1 | 𝛽⟩ to return 1 to 𝛽 , which is
the return for a normal recursive call. If the list has the form Cons(𝑥, 𝑥𝑠) and 𝑥 is zero, we return
with ⟨0 | 𝛼⟩, where 𝛼 is the return point which short-circuits the computation. If 𝑥 isn’t zero, then
we have to perform the recursive call mult’(𝑥𝑠 ;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)), where we use �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽) to
bind the result of the recursive call to the variable 𝑧 before multiplying it with 𝑥 and returning to
𝛽 . Don’t be discouraged if this looks complicated at the moment; the main part of this paper will
cover everything in much more detail.

Fig. 1. Screenshot of the online evaluator available at
grokking-sc.github.io/grokking-sc.

The 𝜆𝜇�̃�-calculus that you have just
seen was first introduced by Curien and
Herbelin [2000] as a solution to a long-
standing open question: What should a
term language for the sequent calculus
look like? The sequent calculus is one of
two influential proof calculi introduced
by Gentzen [1935a,b] in a single paper,
the other calculus being natural deduc-
tion.The term language for natural deduc-
tion is the ordinary lambda calculus, but it
was difficult to find a good term language
for the sequent calculus. After it had been
found, the 𝜆𝜇�̃�-calculus was proposed as
a better foundation for compiler interme-
diate languages, for example by Downen
et al. [2016]. Despite this, most language
designers and compiler writers are still
unfamiliar with it. This is the situation
that we hope to remedy with this pearl.

We frequently discuss ideas which in-
volve the 𝜆𝜇�̃�-calculus with students and
colleagues and therefore have to intro-
duce them to its central ideas. But we usually cannot motivate the 𝜆𝜇�̃�-calculus as a term as-
signment system for the sequent calculus, since most of them are not familiar with it. We instead

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

https://grokking-sc.github.io/grokking-sc/

Grokking the Sequent Calculus (Functional Pearl) 250:3

explain the 𝜆𝜇�̃�-calculus on the whiteboard by compiling small functional programs into it. Such
an introduction is regrettably still missing in the published literature; most existing presentations
either presuppose knowledge of the sequent calculus or otherwise spend a lot of space introduc-
ing it first. We believe that if one can understand the lambda calculus without first learning about
natural deduction proofs, then one should also be able to understand the 𝜆𝜇�̃�-calculus without
knowing the sequent calculus1.

Why are we excited about the 𝜆𝜇�̃�-calculus, and why do we think that more people should
become familiar with its central ideas and concepts?Themain feature which distinguishes the 𝜆𝜇�̃�-
calculus from the lambda calculus is its first-class treatment of evaluation contexts. An evaluation
context is the remainder of the programwhich runs after the current subexpression we are focused
on finishes evaluating.

This becomes clearer with an example: When we want to evaluate the expression (2 + 3) ∗ 5,
we first have to focus on the subexpression 2 + 3 and evaluate it to its result 5. The remainder
of the program, which will run after we have finished the evaluation, can be represented with
the evaluation context □ ∗ 5. We cannot bind an evaluation context like □ ∗ 5 to a variable in
the lambda calculus, but in the 𝜆𝜇�̃�-calculus we can bind such evaluation contexts to covariables.
Furthermore, the 𝜇-operator gives direct access to the evaluation context in which the expression
is currently evaluated. Having such direct access to the evaluation context is not always neces-
sary for a programmer who wants to write an application, but it is often important for compiler
implementors who write optimizations to make programs run faster. One solution that compiler
writers use to represent evaluation contexts in the lambda calculus is called continuation-passing
style. In continuation-passing style, an evaluation context like □ ∗ 5 is represented as a function
𝜆𝑥 .𝑥 ∗5. This solution works, but the resulting types which are used to type a program in this style
are arguably hard to understand. Being able to easily inspect these types can be very valuable,
especially for intermediate representations, where terms tend to look complex. The promise of the
𝜆𝜇�̃�-calculus is to provide the expressive power of programs in continuation-passing style without
having to deal with the type-acrobatics that are usually associated with it.

The remainder of this paper is structured as follows:
• In Section 2 we introduce the surface language Fun and show how we can translate it into

the sequent-calculus-based language Core. The surface language is mostly an expression-
oriented functional programming language, but we have added some features such as codata
types and control operators whose translations provide important insights into how the
𝜆𝜇�̃�-calculus works. In this section, we also compare how redexes are evaluated in both
languages.

• In Section 3we discuss static and dynamic focusing, which are two closely related techniques
for lifting subexpressions which are not values into a position where they can be evaluated.

• Section 4 introduces the typing rules for Fun and Core and proves standard results about
typing and evaluation.

• We show why we are excited about the 𝜆𝜇�̃�-calculus in Section 5. We present various pro-
gramming language concepts which become much clearer when we present them in the
𝜆𝜇�̃�-calculus: We show that let-bindings are precisely dual to control operators, that data
and codata types are two perfectly dual ways of specifying types, and that the case-of-case
transformation is nothingmore than a 𝜇-reduction.These insights are not novel for someone
familiar with the 𝜆𝜇�̃�-calculus, but not yet as widely known as they should be.

• Finally, in Section 6 we discuss related work and provide pointers for further reading. We
conclude in Section 7.

1For the interested reader, we show in Appendix A how the sequent calculus and the 𝜆𝜇�̃�-calculus are connected.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:4 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

This paper is accompanied by a Haskell implementation which we also make available as an
interactive website (cf. Figure 1). You can run the examples presented in this paper in the online
evaluator.

2 Translating to Sequent Calculus
In this section, we introduce Fun, an expression-oriented functional programming language, to-
getherwith its translation into the sequent-calculus-based intermediate languageCore.We present
both languages and the translation function J−K in multiple steps, starting with arithmetic ex-
pressions and adding more features in later subsections. We postpone the typing rules for both
languages until Section 4.

2.1 Arithmetic Expressions
We begin with arithmetic expressions which consist of variables, integer literals, binary operators
and ifz, a conditional expression which checks whether its first argument is equal to zero. The
syntax of arithmetic expressions for Fun and Core is given in Definition 2.1.

Definition 2.1 (Arithmetic Expressions).
𝑥,𝑦, 𝑧, . . . ∈ VaRiables ⋆, 𝛼, 𝛽,𝛾, . . . ∈ CovaRiables ⊙ ∈ {∗, +,−}

Fun

𝑡 F 𝑥 | ⌜𝑛⌝ | 𝑡 ⊙ 𝑡 | ifz(𝑡, 𝑡, 𝑡)
Core

𝑝 F 𝑥 | ⌜𝑛⌝ | 𝜇𝛼.𝑠 Producer
𝑐 F 𝛼 Consumer
𝑠 F ⊙(𝑝, 𝑝; 𝑐) | ifz(𝑝, 𝑠, 𝑠) | ⟨𝑝 | 𝑐⟩ Statement

J𝑥K ≔ 𝑥 J𝑡1 ⊙ 𝑡2K ≔ 𝜇𝛼. ⊙ (J𝑡1K, J𝑡2K;𝛼) (𝛼 fresh)J⌜𝑛⌝K ≔ ⌜𝑛⌝ Jifz(𝑡1, 𝑡2, 𝑡3)K ≔ 𝜇𝛼.ifz(J𝑡1K, ⟨J𝑡2K | 𝛼⟩, ⟨J𝑡3K | 𝛼⟩) (𝛼 fresh)

In Fun there is only one syntactic category: terms 𝑡 .These terms can either be variables 𝑥 , literals
⌜𝑛⌝, binary operators 𝑡 + 𝑡 , 𝑡 ∗ 𝑡 and 𝑡 − 𝑡 , or a conditional ifz(𝑡, 𝑡0, 𝑡1). This conditional evaluates
to 𝑡0 if 𝑡 evaluates to ⌜0⌝, or to 𝑡1 otherwise. In contrast to this single category, Core uses three
different syntactic categories: producers 𝑝 , consumers 𝑐 and statements 𝑠 . These categories are
directly inherited from the 𝜆𝜇�̃�-calculus, and it is important to understand their differences:
Producers All constructs in Core which construct or produce an element of some type belong to

the syntactic category of producers. In other words, producers correspond to “introduction
forms” or “proof terms”, and every term of the language Fun is translated to a producer in
Core.

Consumers Consumers are probably less intuitive than producers since they do not correspond
directly to any term of the language Fun. The basic idea is that if some consumer 𝑐 has type
𝜏 , then 𝑐 consumes or destructs a producer of type 𝜏 . If you have encountered evaluation
contexts or continuations before, then it is helpful to think of consumers of type 𝜏 as con-
tinuations or evaluation contexts for a producer of type 𝜏 . And if you are familiar with the
Curry-Howard correspondence, then you can think of consumers as refutations or direct
evidence that a proposition is false.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:5

Statements Statements are the ingredient which make computation happen; without statements,
we would only have static objects without any dynamic behavior. Here is a non-exhaustive
list of examples for statements: Every IO action which reads from or prints to the console
or a file should be represented as a statement in Core. Computations on primitive types
such as machine integers should be statements. Finally, everything which is a redex in an
expression-based language should also correspond to a statement in Core. Since statements
themselves only compute and do not return anything they do not have a type.

After these general remarks, let us now look at how arithmetic expressions are represented in the
language Core. Variables 𝑥 and literals ⌜𝑛⌝ both belong to the category of producers, but binary
operators are represented as statements ⊙(𝑝1, 𝑝2; 𝑐). First, let us explain why they are represented
as statements instead of producers. The idea is that a binary operator on primitive integers has
to be evaluated directly by the arithmetic logic unit (ALU) of the underlying machine. And any
operation which directly invokes the machine should belong to the same syntactic category as a
print or other IO instruction: statements. The machine does not return a result; rather, it reads
inputs from registers and makes the result available in a register for further computation. This
is also reflected in the second surprising aspect: the operator has three instead of two arguments.
The two producers 𝑝1 and 𝑝2 correspond to the usual arguments, but the third consumer argument
𝑐 says what should happen to the result once the binary operator has been evaluated. This is
similar to the continuation argument of a function in continuation-passing style. Binary operators
⊙(𝑝1, 𝑝2; 𝑐) also display a syntactic convention we use: whenever some construct has arguments
of different syntactic categories, we use a semicolon instead of a comma to separate them.

We can immediately see that the result of J𝑝1 +𝑝2K should contain the statement +(J𝑝1K, J𝑝2K; ?),
but we still have to figure out which consumer to plug in at the third-argument place, and how to
convert this statement into a producer. We can do this with a 𝜇-abstraction in Core, which turns
a statement into a producer while binding a covariable 𝛼 : 𝜇𝛼. + (J𝑝1K, J𝑝2K;𝛼).

The statement ifz works similarly to binary operators: It is a computation which checks if the
producer 𝑝 is zero and then continues with one of its two branches. These branches are also state-
ments, indicatingwhich computation to run after the condition has been evaluated. In the language
Fun the two branches were terms, so we now have to find a way to transform two producers into
two statements. We can do this by using a cut ⟨𝑝 | 𝑐⟩ which combines a producer and a consumer
of the same type to obtain a statement in each branch: ifz(J𝑡1K, ⟨J𝑡2K | ? ⟩, ⟨J𝑡3K | ? ⟩). We can then
use the same covariable 𝛼 in both statements to represent the fact that the we want the result in
either branch to return to the same point in the program; we use a surrounding 𝜇-binding again
to bind this covariable: 𝜇𝛼.ifz(J𝑡1K, ⟨J𝑡2K | 𝛼⟩, ⟨J𝑡3K | 𝛼⟩).

Let us now see how arithmetic expressions are evaluated. Definition 2.2 introduces the syntax
of values and covalues, and shows how to reduce immediate redexes. We use a simple syntactic
convention here:Themetavariable for a value of terms 𝑡 is 𝔱, the values of producers 𝑝 are written𝔭
and the covalues which correspond to consumers 𝑐 are written 𝔠. We use the symbol ⊲ for reduction
in both Fun and Core (and write ⊲∗ when multiple steps are performed at once).

Values and the evaluation of redexes in Fun is straightforward, the only noteworthy aspect is
that the two rules for ifz(·, 𝑡1, 𝑡2) do not require 𝑡1 and 𝑡2 to be values. Thus, let us proceed with
the discussion of the language Core.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:6 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Definition 2.2 (Evaluation for Arithmetic Expressions).
Fun

𝔱 F ⌜𝑛⌝ Values

ifz(⌜0⌝, 𝑡1, 𝑡2) ⊲ 𝑡1
ifz(⌜𝑛⌝, 𝑡1, 𝑡2) ⊲ 𝑡2 (if 𝑛 ≠ 0)

⌜𝑛⌝ ⊙ ⌜𝑚⌝ ⊲ ⌜𝑛 ⊙𝑚⌝

Core

𝔭 F ⌜𝑛⌝ Values
𝔠 F 𝛼 Covalues

ifz(⌜0⌝, 𝑠1, 𝑠2) ⊲ 𝑠1
ifz(⌜𝑛⌝, 𝑠1, 𝑠2) ⊲ 𝑠2 (if 𝑛 ≠ 0)
⊙(⌜𝑛⌝, ⌜𝑚⌝; 𝑐) ⊲ ⟨⌜𝑛 ⊙𝑚⌝ | 𝑐⟩

⟨𝜇𝛼.𝑠 | 𝔠⟩ ⊲ 𝑠 [𝔠/𝛼]

The first interesting aspect of the language Core is that there are both values and covalues. This
can be explained by the role that values play in operational semantics: they specify the subset
of terms that we are allowed to substitute for a variable. And since we have both variables which
stand for producers and covariables which stand for consumers, we need both values and covalues
as the respective subsets which we are allowed to substitute for a variable or covariable.

The second interesting aspect of the language Core is that only statements are reduced, not
producers or consumers. This substantiates our remark from above that it is statements that intro-
duce dynamism into the language by driving computation. It also contributes to the feeling that
reduction in the language is close to the evaluation of an abstract machine and that the statements
of Core correspond to the states of such an abstract machine.

We are still faced with a small problem when we want to show that a term of Fun evaluates to
the same result as its translation intoCore:We have only specified the reduction for statements but
not for producers. We can easily solve this problem by introducing a special covariable ⋆ which
acts as the “top-level” consumer of an evaluation. Using ⋆ we can then evaluate the statement
⟨J𝑡K | ⋆⟩ instead of the producer J𝑡K.
Example 2.1. Consider the two terms ⌜2⌝ ∗⌜3⌝ and ifz(⌜2⌝, ⌜5⌝, ⌜10⌝) of Fun. Their respective

translations intoCore are 𝜇𝛼.∗(⌜2⌝, ⌜3⌝;𝛼) and 𝜇𝛼.ifz(⌜2⌝, ⟨⌜5⌝ | 𝛼⟩, ⟨⌜10⌝ | 𝛼⟩). Whenwewrap
them into a statement using the top-level continuation ⋆, we observe the following evaluation:

⟨𝜇𝛼. ∗ (⌜2⌝, ⌜3⌝;𝛼) | ⋆⟩ ⊲ ∗(⌜2⌝, ⌜3⌝;⋆) ⊲ ⟨⌜6⌝ | ⋆⟩
⟨𝜇𝛼.ifz(⌜2⌝, ⟨⌜5⌝ | 𝛼⟩, ⟨⌜10⌝ | 𝛼⟩) | ⋆⟩ ⊲ ifz(⌜2⌝, ⟨⌜5⌝ | ⋆⟩, ⟨⌜10⌝ | ⋆⟩) ⊲ ⟨⌜10⌝ | ⋆⟩

We have successfully evaluated the first term to the result ⌜6⌝ and the second term to the result
⌜10⌝.

In the following, we will often leave out the first reduction step in examples, thus silently re-
placing the covariable bound by the outermost 𝜇-binding with the top-level consumer ⋆.

Here is a bigger problem that we haven’t addressed yet. The evaluation rules in the present
section do not allow to evaluate nested expressions like (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ in Fun or its translation
𝜇𝛼. + (𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼) in Core. We will discuss this problem and its solution in more
detail in Section 3.

2.2 Let Bindings
Let-bindings are important since we can use them to eliminate duplication and make code more
readable. In this section we introduce let-bindings to Fun for an additional reason: they allow us
to introduce the second construct which gives the 𝜆𝜇�̃�-calculus its name: �̃�-abstractions.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:7

Definition 2.3 (Let-Bindings and �̃�-abstractions).
Fun

𝑡 F . . . | let 𝑥 = 𝑡 in 𝑡

let 𝑥 = 𝔱 in 𝑡 ⊲ 𝑡 [𝔱/𝑥]

Core

𝑐 F . . . | �̃�𝑥 .𝑠
𝔠 F . . . | �̃�𝑥 .𝑠
⟨𝔭 | �̃�𝑥 .𝑠⟩ ⊲ 𝑠 [𝔭/𝑥]

Jlet 𝑥 = 𝑡1 in 𝑡2K ≔ 𝜇𝛼.⟨J𝑡1K | �̃�𝑥 .⟨J𝑡2K | 𝛼⟩⟩ (𝛼 fresh)

The let-bindings in Fun are standard and are evaluated by substituting the value 𝔱 for the vari-
able 𝑥 in the body which is a term. The analogue of a let-binding in Fun is a �̃�-binding in Core
which also binds a variable, with the difference that the body of a �̃�-binding is a statement. It can
easily be seen that �̃�-bindings are the precise dual of 𝜇-bindings that we have already introduced.

With both 𝜇- and �̃�-bindings in Corewe have to face a potential problem, namely statements of
the form ⟨𝜇𝛼.𝑠1 | �̃�𝑥 .𝑠2⟩. Such a statement is called a critical pair since it can potentially be reduced
to both 𝑠1 [�̃�𝑥 .𝑠2/𝛼] and 𝑠2 [𝜇𝛼.𝑠1/𝑥] which can be a source of non-confluence. A closer inspection
of the rules shows that we avoid this pitfall and always evaluate the statement to 𝑠1 [�̃�𝑥 .𝑠2/𝛼].
We do not allow to reduce the statement to 𝑠2 [𝜇𝛼.𝑠1/𝑥] since only values 𝔭 can be substituted
for variables, and 𝜇𝛼.𝑠1 is not a value. This restriction precisely mirrors the restriction on the
evaluation of let-bindings in Fun. In other words, we use call-by-value evaluation order. We will
address the critical pair and how it relates to different evaluation orders again in Section 5.6.

Example 2.2. Consider the term let 𝑥 = ⌜2⌝ ∗ ⌜2⌝ in 𝑥 ∗ 𝑥 whose translation into Core is
the producer 𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜2⌝; 𝛽) | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | 𝛼⟩⟩.This producer contains a critical pair
which we have underlined. Because we are using call-by-value, we can observe how the following
reduction steps resolve the critical pair by evaluating the 𝜇-abstraction first.

⟨𝜇𝛽. ∗ (⌜2⌝, ⌜2⌝; 𝛽) | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ∗(⌜2⌝, ⌜2⌝; �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩)⊲
⟨⌜4⌝ | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ⟨𝜇𝛾 . ∗ (⌜4⌝, ⌜4⌝;𝛾) | ⋆⟩ ⊲ ∗(⌜4⌝, ⌜4⌝;⋆) ⊲ ⟨⌜16⌝ | ⋆⟩

We can observe that the arithmetic expression 2∗2 has been evaluated only once, which is precisely
what we expect from call-by-value.

2.3 Top-Level Definitions
We introduce recursive top-level definitions to Fun and Core for two reasons. They allow us to
write more interesting examples and they illustrate a difference in how recursive calls are handled.
The extension is specified in Definition 2.4.

Definition 2.4 (Top-Level Definitions). We assume for both languages that 𝑓 , 𝑔, ℎ, . . . ∈ Names.
Fun

𝐹 F def 𝑓 (𝑥 ;𝛼) ≔ 𝑡 Definitions
𝑃 F ∅ | 𝐹, 𝑃 Programs
𝑡 F . . . | 𝑓 (𝑡 ;𝛼) Terms

𝑓 (𝔱;𝛼) ⊲𝑡 [𝔱/𝑥, 𝛼/𝛽] (if 𝑓 (𝑥 ; 𝛽) ≔ 𝑡 ∈ 𝑃)

Core

𝐹 F def 𝑓 (𝑥 ;𝛼) ≔ 𝑠 Definitions
𝑃 F ∅ | 𝐹, 𝑃 Programs
𝑠 F . . . | 𝑓 (𝑝; 𝑐) Statements

𝑓 (𝔭; 𝔠) ⊲𝑠 [𝔭/𝑥, 𝔠/𝛼] (if 𝑓 (𝑥 ;𝛼) ≔ 𝑠 ∈ 𝑃)Jdef 𝑓 (𝑥 ;𝛼) ≔ 𝑡K ≔ def 𝑓 (𝑥 ;𝛼, 𝛼) ≔ ⟨J𝑡K | 𝛼⟩ (𝛼 fresh)J𝑓 (𝑡 ;𝛼)K ≔ 𝜇𝛼.𝑓 (J𝑡K;𝛼, 𝛼) (𝛼 fresh)

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:8 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Top-level definitions should not be confused with first-class functions which will be introduced
later, since they cannot be passed as an argument or returned as a result. They are a part of a
program that consists of a list of such top-level definitions. The top-level definitions in Fun curi-
ously also take covariables as arguments even though the language does not contain consumers;
you can ignore that for now. If you remember the example from the introduction, then you might
recall that we use them for passing labels, but we will only formally introduce that construct in
Section 2.6.

We evaluate the call of a top-level definition by looking up the body in the program and sub-
stituting the arguments of the call for the parameters in the body of the definition. The body of
a top-level definition is a term in Fun and a statement in Core. This difference explains why we
have to add an additional parameter 𝛼 to every top-level definition when we translate it; this pa-
rameter 𝛼 also corresponds to the additional continuation argument when we ordinarily translate
a function into continuation-passing style.We could also have specified that the body of a top-level
definition in Core should be a producer. We don’t do that because when we eventually translate
Core to machine code we want every top-level definition to become the target of a jump with
arguments without building up a function call stack. The following example shows how this works:

Example 2.3. Using a top-level definition, we can represent the factorial function in Core.

def fac(𝑛;𝛼) ≔ ifz(𝑛, ⟨⌜1⌝ | 𝛼⟩,−(𝑛, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (𝑛, 𝑟 ;𝛼))))

For the argument ⌜1⌝ this evaluates in the following way:

fac(⌜1⌝,⋆) ⊲ ifz(⌜1⌝, ⟨⌜1⌝ | ⋆⟩,−(⌜1⌝, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆))))
⊲ −(⌜1⌝, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)))
⊲ ⟨⌜0⌝ | �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆))⟩
⊲ fac(⌜0⌝; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)) (∗)
⊲ ifz(⌜0⌝, ⟨⌜1⌝ | �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)⟩, . . .)
⊲ ⟨⌜1⌝ | �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)⟩
⊲ ∗(⌜1⌝, ⌜1⌝;⋆) ⊲ ⟨⌜1⌝ | ⋆⟩

At the point (∗) of the evaluation we can now see how the recursive call is evaluated. In Fun this
recursive call would have the form 1 ∗ fac(0) and require a function stack, but in Core we can
jump to the definition of fac with the consumer �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆) as an additional argument which
contains the information that the result of the recursive call should be bound to the variable 𝑟 and
then multiplied with ⌜1⌝. Note again that this consumer argument corresponds to a continuation
in continuation-passing style (in that sense it might be viewed as a reified stack) and so the basic
techniques used in CPS-based intermediate representations and compilers can be applied for its
implementation.

2.4 Algebraic Data and Codata Types
We now extend Fun and Core with two new features: algebraic data and codata types. Algebraic
data types are familiar frommost typed functional programming languages. Algebraic codata types
[Hagino 1989] are a little more unusual; they are defined by a set of observations or methods called
destructors and are quite similar to interfaces in object-oriented programming [Cook 2009]. We
introduce them both in the same section because they help to illustrate some of the deep theoretical
dualities and symmetries of the sequent calculus and the 𝜆𝜇�̃�-calculus.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:9

To get acquainted with our syntax, let us first briefly look at two short examples in Fun. The
following definition calculates the sum over a List it receives as input.

def sum(𝑥) ≔ case 𝑥 of {Nil ⇒ ⌜0⌝, Cons(𝑦,𝑦𝑠) ⇒ 𝑦 + sum(𝑦𝑠)}
It does so by pattern matching using the case ... of {...} construct which is entirely standard. As
an example of codata types, consider this definition:

def repeat(𝑥) ≔ cocase {hd ⇒ 𝑥, tl ⇒ repeat(𝑥)}
It constructs an infinite Stream whose elements are all the same as the input 𝑥 of the function. A
Stream is defined by two destructors, hd yields the head of the stream and tl yields the remaining
stream without the head. The stream is constructed by copattern matching [Abel et al. 2013] using
the cocase {...} construct.

Definition 2.5 (Algebraic Data and Codata Types).
Fun

𝑡 F . . . | 𝐾 (𝑡) | case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}
| 𝑡 .𝐷 (𝑡) | cocase {𝐷 (𝑥) ⇒ 𝑡}

𝔱 F . . . | 𝐾 (𝔱) | cocase {𝐷 (𝑥) ⇒ 𝑡}

case 𝐾 (𝔱) of {𝐾 (𝑥) ⇒ 𝑡, . . .} ⊲ 𝑡 [𝔱/𝑥]
cocase {𝐷 (𝑥) ⇒ 𝑡, . . .}.𝐷 (𝔱) ⊲ 𝑡 [𝔱/𝑥]

Core

𝑝 F . . . | 𝐾 (𝑝; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}
𝑐 F . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}
𝔭 F . . . | 𝐾 (𝔭; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}
𝔠 F . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}

⟨𝐾 (𝔭; 𝔠) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠, . . .}⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]
⟨cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠, . . .} | 𝐷 (𝔭; 𝔠)⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]

J𝐾 (𝑡1, . . . , 𝑡𝑛)K ≔ 𝐾 (J𝑡1K, . . . , J𝑡𝑛K)Jcase 𝑡 of {𝐾𝑖 (𝑥𝑖, 𝑗) ⇒ 𝑡𝑖 }K ≔ 𝜇𝛼.⟨J𝑡K | case {𝐾𝑖 (𝑥𝑖, 𝑗) ⇒ ⟨J𝑡𝑖K | 𝛼⟩}⟩ (𝛼 fresh)J𝑡 .𝐷 (𝑡1, . . . , 𝑡𝑛)K ≔ 𝜇𝛼.⟨J𝑡K | 𝐷 (J𝑡1K, . . . , J𝑡𝑛K;𝛼)⟩ (𝛼 fresh)Jcocase {𝐷𝑖 (𝑥𝑖, 𝑗) ⇒ 𝑡𝑖 }K ≔ cocase {𝐷𝑖 (𝑥𝑖, 𝑗 ;𝛼𝑖) ⇒ ⟨J𝑡𝑖K | 𝛼𝑖⟩} (𝛼𝑖 fresh)

The general syntax is given in Definition 2.5. We assume fixed sets of constructors 𝐾 containing
at least Nil, Cons and Tup and destructors𝐷 containing at least hd, tl, fst and snd. In Funwe use
constructors 𝐾 to define both terms 𝐾 (𝑡) and case expressions case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}. Destructors
𝐷 of codata types are used in destructor terms 𝑡 .𝐷 (𝑡) and cocase expressions cocase {𝐷 (𝑥) ⇒ 𝑡}.
The term 𝑡 in case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} and 𝑡 .𝐷 (𝑡) is called the scrutinee in both cases.

2.4.1 Data Types. Let us consider another example to better understand the general syntax:
def swap(𝑥) ≔ case 𝑥 of {Tup(𝑦, 𝑧) ⇒ Tup(𝑧,𝑦)}

The function swap takes a Pair and swaps its elements. To do so, it pattern matches on its input
using the case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} construct, and constructs a tuple using a constructor 𝐾 (𝑡), where
𝐾 is specialized to Tup. Our syntax is quite general, so it is easy to extend it with new constructors;
any such extension only requires that we also add corresponding typing rules (Section 4).

In Core, data types are mostly handled in the same way as in Fun. The main difference is that
the scrutinee is no longer a part of a case expression. Instead, the case expression is a consumer and
the scrutinee is a producer, which are then combined in a statement. This is exactly what is done
in the translation. When a case and a constructor meet, there is an opportunity for computation,
consuming the constructed term and continuing with the corresponding right-hand side of the case

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:10 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

expression. This also explains our terminology of producers and consumers. Constructors create, or
in other words, produce data structures while cases destroy, or consume them.

There is another difference, however. Constructors in Core can now also take consumers as
arguments which is not the case in Fun. An example of this is the negation type of a type 𝜏 which
can be formulated as a data type with one constructor taking a consumer of type 𝜏 as an argument.
A program making use of this type can be found in section 7.2 of Ostermann et al. [2022].

Fun is a call-by-value language which manifests itself in that a value of an algebraic data type
consists of a constructor applied to other values. A case expression case 𝑡 of {. . .} can only be
evaluated if the scrutinee 𝑡 is a value, so this means that it must be a constructor whose arguments
are all values in the evaluation rule.

Evaluation in Core is done the same way, only with the scrutinee term changed to be the pro-
ducer of a cut. Note that all consumers in Core are covalues (which is why the arguments of
destructors in the definition of covalues are not in Fraktur font), so in order for a constructor term
to be a value, only its producer arguments need to be values. This also means that the require-
ment for the consumer arguments of the constructor to be covalues is vacuously satisfied in the
evaluation rule in Core.

Example 2.4. The translation of swap (including a simplification) is given by

def swap(𝑥 ;𝛼) ≔ ⟨𝑥 | case {Tup(𝑦, 𝑧) ⇒ ⟨Tup(𝑧,𝑦) | 𝛼⟩}⟩
Evaluating with an argument Tup(⌜2⌝, ⌜3⌝) and ⋆ then proceeds as we would expect

⟨Tup(⌜2⌝, ⌜3⌝) | case {Tup(𝑦, 𝑧) ⇒ ⟨Tup(𝑧,𝑦) | ⋆⟩}⟩ ⊲ ⟨Tup(⌜3⌝, ⌜2⌝) | ⋆⟩

2.4.2 Codata Types. To illustrate the syntax for codata types further, consider the definition

def swap_lazy(𝑥) ≔ cocase {fst ⇒ 𝑥 .snd, snd ⇒ 𝑥 .fst}
swap_lazy takes a lazy pair (LPair), which is defined by its projections fst and snd, and swaps
its elements. It does so with a copattern match cocase {𝐷𝑖 (𝑥) ⇒ 𝑡𝑖 } which invokes the opposite
destructor on the original pair in each branch. With a destructor invocation 𝑡 .𝐷 (𝑡), where 𝐷 is
specialized to fst or snd, we can then obtain the corresponding component of the new pair.

For codata in Fun, the scrutinee is located in the destructor term instead of the cocase, inverse to
data types. So now destructors are the consumers and cocases are the producers. This is mirrored
in the translation which again separates the scrutinee, since in Core codata types and copattern
matching are perfectly dual to data types and pattern matching.

All the destructors we have used here do not have producer parameters, but this is just due
to the selection of examples. In the next section, we will see an example of a destructor with a
producer parameter. Moreover, during the translation each destructor is endowed with an addi-
tional consumer parameter which again determines how execution continues after the destructor
was invoked (and is thus bound by a surrounding 𝜇). For constructors this is not necessary, as we
can use the same consumer variable directly in each branch of a case (similar to ifz2) because the
scrutinee and the case are in the same expression. Destructors (and also constructors) in Core can
even have more than one consumer parameter. An example of this is given in Section 5.7.

Evaluation is done analogous to data types, with the roles of cases and constructors reversed
for cocases and destructors. Note, however, that for evaluation in Core the producer arguments
of the destructor also have to be values, so it is not sufficient for the destructor to be a covalue
(which it always is). We will come back to this subtlety in Section 3.
2We could have modelled ifz as a case, too, by modeling numbers as a data type. But since ifz corresponds to a machine
instruction quite directly, it is natural to make it a statement, as explained in Section 2.1.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:11

Example 2.5. Translating swap_lazy is done analogously to swap.
def swap_lazy(𝑥 ;𝛼) ≔ ⟨cocase {fst(𝛽) ⇒ ⟨𝑥 | snd(𝛽)⟩, snd(𝛽) ⇒ ⟨𝑥 | fst(𝛽)⟩} | 𝛼⟩

Now take 𝑝 = cocase {fst(𝛼) ⇒ ⟨⌜1⌝ | 𝛼⟩, snd(𝛼) ⇒ ∗(⌜2⌝, ⌜3⌝;𝛼)} and evaluate swap_lazy
with snd to retrieve its first element:
swap_lazy(𝑝; snd(⋆)) ⊲ ⟨cocase {fst(𝛽) ⇒ ⟨𝑝 | snd(𝛽)⟩, snd(𝛽) ⇒ ⟨𝑝 | fst(𝛽)⟩} | snd(⋆)⟩

⊲ ⟨𝑝 | fst(⋆)⟩ ⊲ ⟨⌜1⌝ | ⋆⟩
Because cocases are values regardless of their right-hand sides (in contrast to constructors), we can
apply the destructor snd without first evaluating the product ∗(⌜2⌝, ⌜3⌝;𝛼). For pairs, we could
not do this, as Tup(⌜1⌝, ∗(⌜2⌝, ⌜3⌝;𝛼)) is not a value, so its arguments have to be evaluated first.
This is why this codata type is called lazy pair, as it allows to not evaluate its contents in contrast
to regular pairs.

This section showed an important property of Core which does not hold for Fun. The data and
codata types of Core are completely symmetric: the syntax for cases is the same as the syntax for
cocases and the same is true for constructors and destructors. The reason for this deep symmetry
is the same reason that makes the sequent calculus more symmetric than natural deduction, but
in Definition 2.5 we can observe it in a programming language.

2.5 First-Class Functions
A core feature that we have omitted until now are first-class functions which are characterized by
lambda abstractions 𝜆𝑥 .𝑡 and function applications 𝑡1 𝑡2. But first-class functions do not add any
expressive power to a language with codata types, since codata types are a more general concept
which subsumes functions as a special case. We could therefore implement lambda abstractions
and function applications as syntactic sugar in both Fun and Core. This is incidentally also what
the developers of Java did when they introduced lambdas to the language [Goetz et al. 2014]. We
introduce lambda abstractions and function application to the syntax of Fun and desugar them to
cocases and destructors of a codata type with an ap destructor during the translation to Core.

Definition 2.6 (First-Class Functions).
Fun

𝑡 F . . . | 𝜆𝑥.𝑡 | 𝑡 𝑡
𝔱 F . . . | 𝜆𝑥.𝑡

(𝜆𝑥.𝑡) 𝔱 ⊲ 𝑡 [𝔱/𝑥]

Core

𝐷 ∈ {. . . , ap}

J𝜆𝑥 .𝑡K ≔ cocase {ap(𝑥 ;𝛼) ⇒ ⟨J𝑡K | 𝛼⟩} (𝛼 fresh)J𝑡1 𝑡2K ≔ 𝜇𝛼.⟨J𝑡1K | ap(J𝑡2K;𝛼)⟩ (𝛼 fresh)

Example 2.6. Consider the term (𝜆𝑥.𝑥 ∗ 𝑥) ⌜2⌝ in Fun. We can translate this term and evaluate
it in Core as follows:
⟨cocase {ap(𝑥, 𝛽) ⇒ ⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | 𝛽⟩} | ap(⌜2⌝;⋆)⟩ ⊲ ⟨𝜇𝛾 . ∗ (⌜2⌝, ⌜2⌝;𝛾) | ⋆⟩ ⊲∗ ⟨⌜4⌝ | ⋆⟩

2.6 Control Operators
Finally, we add the feature that we used in the motivating example in the introduction: labels and
jumps. We have to extend Fun with label and goto constructs, but since we can translate them
locally to 𝜇-bindings we don’t have to add anything to Core.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:12 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Definition 2.7 (Control Operators).
𝑡 F . . . | label 𝛼 {𝑡} | goto(𝑡 ;𝛼)

Jlabel 𝛼 {𝑡}K ≔ 𝜇𝛼.⟨J𝑡K | 𝛼⟩ Jgoto(𝑡 ;𝛼)K ≔ 𝜇𝛽.⟨J𝑡K | 𝛼⟩ (𝛽 fresh)

A term label 𝛼 {𝑡} binds a covariable 𝛼 in the term 𝑡 and thereby provides a location to which a
goto used within 𝑡 can jump. Such a goto(𝑡 ;𝛼) takes the location 𝛼 as an argument, as well as the
term 𝑡 that should be used to continue the computation at the location where 𝛼 was bound. It is a
bit tricky to write down precisely how the evaluation of label and goto works, but the following
two rules are a good approximation, where we assume that 𝛼 does not occur free in 𝔱:

label 𝛼 {𝔱} ⊲ 𝔱 label 𝛼 {. . . goto(𝔱;𝛼) . . .} ⊲ 𝔱
The left rule says that when the labeled term 𝑡 can be evaluated to a value 𝔱 without ever using
a goto, then we can discard the surrounding label. The rule on the right says that if we do have
a goto which jumps to the label 𝛼 with a value 𝔱, then we discard everything between the label
and the goto and continue the computation with this value 𝔱. In order to make this second rule
precise, we have to make explicit what we only indicate with the ellipses separating the label from
the jump; we will do so in Section 3.

Example 2.7. In the introduction, we used the example of a fast multiplication function which
multiplies all the elements of a list and short-circuits the computation if it encounters a zero. As we
have allowed top-level definitions to pass covariables as arguments, we can nowwrite the example
of the introduction.

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼)}
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼))}

When we translate to Core and simplify the resulting term, we get the result:
def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼, 𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾); 𝛽))}⟩
This is almost the result we have seen in the introduction. The only difference is that the recursive
call to mult’ is nested inside the multiplication. This is the same problem we have seen with nested
arithmetic operations at the end of Section 2.1 and we will address it in the next section.

The label/goto control operator we have introduced in this subsection is of course named after
the goto instructions and labels which can be found in many imperative programming languages.
Our adaption to the context of functional programming languages is similar to classical control
operators (see Section 5.3 for a more precise discussion) such as J [Landin 1965] or let/cc (also
known as escape) [Reynolds 1972]; the programming language Scala also provides the closely re-
lated boundary/break3 where a boundary marks a block of code to which the programmer can
jump with a break instruction. One central property of this control effect is that it is lexically
scoped, since the label names 𝛼 are passed around lexically and can be shadowed. This distin-
guishes them from dynamically scoped control operators like the exception mechanisms found
in many programming languages like Java or C++. (A dynamically scoped variant of our control
operator would omit the label names, and the jump in label {. . . goto(𝑡) . . .} would return to the
3See scala-lang.org/api/3.3.0/scala/util/boundary$.html.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

https://www.scala-lang.org/api/3.3.0/scala/util/boundary$.html

Grokking the Sequent Calculus (Functional Pearl) 250:13

nearest enclosing label at runtime.) We follow the more recent reappraisal of lexically scoped con-
trol effects, for example by Zhang et al. [2016] in the case of exceptions or by Brachthäuser et al.
[2020] in the case of effect handlers and delimited continuations.

3 Evaluation Within a Context
At the end of Section 2.1 we ran into the problem that we cannot yet fully evaluate the term
(⌜2⌝ ∗⌜4⌝) +⌜5⌝ in Fun or its translation 𝜇𝛼.+ (𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼) in Corewith the rules
that are available to us: we are stuck. In this section, we finally address this problem. We are going
to show how we can evaluate subexpressions of Fun in Section 3.1, but since we are ultimately
more interested in compiling programs into Core to optimize and reduce those programs, we are
spending more time on the problem for Core in Section 3.2.

3.1 Evaluation Contexts for Fun
The problem with evaluating the term (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ is that the available rules only allow
to reduce direct redexes and not redexes that are nested somewhere within a term. Evaluation
contexts solve this problem by specifying the locations within a term which are in evaluation
position. In our example, the term (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ can be factored into the evaluation context
□ + ⌜5⌝ and the redex ⌜2⌝ ∗ ⌜4⌝. We can then use the old rules to reduce this redex to ⌜8⌝ and
then plug this result back into the evaluation context, which yields the new term ⌜8⌝ + ⌜5⌝. The
syntax of evaluation contexts is given in Definition 3.1.

Definition 3.1 (Evaluation Contexts). Evaluation contexts 𝐸 are defined as:

𝐸 F □ | 𝐸 ⊙ 𝑡 | 𝔱 ⊙ 𝐸 | ifz(𝐸, 𝑡, 𝑡) | let 𝑥 = 𝐸 in 𝑡 | 𝑓 (𝔱, 𝐸, 𝑡) | 𝐾 (𝔱, 𝐸, 𝑡)
| case 𝐸 of {𝐾 (𝑥) ⇒ 𝑡} | 𝐸 𝑡 | 𝔱 𝐸 | 𝐸.𝐷 (𝑡) | 𝔱.𝐷 (𝔱, 𝐸, 𝑡) | label 𝛼 {𝐸} | goto(𝐸;𝛼)

These evaluation contexts also allow us to specify formally the second approximate evaluation
rule of the label and goto constructs from Section 2.6:

𝐸 [label 𝛼 {𝐸′ [goto(𝔱;𝛼)]}] ⊲ 𝐸 [𝔱]

Here we again assume that 𝛼 does not occur free in 𝔱 and moreover that the inner evaluation con-
text 𝐸′ does not contain another label construct. For the full operational semantics of label/goto
we also need to handle the cases where 𝛼 can occur free in 𝔱 and where 𝐸′ can contain other
labels. Otherwise, we could get stuck during evaluation even for closed and well-typed terms, i.e.,
the progress theorem (see Theorem 4.1 in Section 4.3) would not hold. As the full semantics is in
essence that of other classical control operators (i.p., let/cc; also see the discussion in Section 5.3)
and requires some more formalism, we do not give it here and instead refer the interested reader
to the brief discussion in Appendix C.

With evaluation contexts, we finally have a working and precise operational semantics for Fun
(apart from the approximate rules for label and goto) which we can use to reason about programs.
Unfortunately, it is wildly inefficient to implement an evaluator which uses evaluation contexts in
the way described above. The reason for this inefficiency is that we very elegantly specified how a
term can be factored into an evaluation context and a redex, but the evaluator which implements
this behavior has to search for the next redex after every single evaluation step. We will see in the
next section that we have a better solution once our programs are compiled into Core.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:14 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

3.2 Focusing on Evaluation in Core
Let us now come back to the problem in Core and find a solution for the stuck term 𝜇𝛼. + (𝜇𝛽. ∗
(⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼). We know that we have to evaluate 𝜇𝛽.∗(⌜2⌝, ⌜4⌝; 𝛽) next and then somehow
plug the intermediate result into the hole [·] in the producer 𝜇𝛼. + ([·], ⌜5⌝;𝛼). If we give the
intermediate result the name 𝑥 and play around with cuts, 𝜇-bindings and �̃� bindings, we might
discover that we can recombine all these parts in the following way:

𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;𝛼)⟩

This term looks a bit mysterious, but the transformation corresponds roughly to what happens
when we translate the term let 𝑥 = 2 ∗ 4 in 𝑥 + 5 instead of (2 ∗ 4) + 5 into Core. That is, we have
lifted a subcomputation to the outside of the term we are evaluating. This kind of transformation
is called focusing [Andreoli 1992; Curien and Munch-Maccagnoni 2010] and we use it to solve the
problem with stuck terms in Core. We can see that it worked in our example because the term
now fully evaluates to its normal form.

Example 3.1. The producer 𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;𝛼)⟩ reduces as follows:

⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;⋆)⟩ ⊲ ∗(⌜2⌝, ⌜4⌝; �̃�𝑥 . + (𝑥, ⌜5⌝;⋆))
⊲ ⟨⌜8⌝ | �̃�𝑥 . + (𝑥, ⌜5⌝;⋆)⟩
⊲ +(⌜8⌝, ⌜5⌝;⋆) ⊲ ⟨⌜13⌝ | ⋆⟩

Once we have settled on focusing, we have another choice to make: Do we want to use this trick
during the evaluation of a statement or as a preprocessing step before we start with the evaluation?
These two alternatives are called dynamic and static focusing.
Dynamic Focusing With dynamic focusing [Wadler 2003] we add additional evaluation rules,

usually called 𝜍-rules, to lift sub-computations to the outside of the statement we are evaluat-
ing.

Static Focusing For static focusing [Curien and Herbelin 2000] we perform a transformation on
the code before we start evaluating it. This results in a focused normal form which is a subset
of the syntax of Core that we have described so far.

Dynamic focusing is great for reasoning about the meaning of programs, but static focusing is
more efficient if we are interested in compiling and running programs. For this reason, we only
consider static focusing in what follows.

The complete rules for static focusing are presented in Definition 3.2. Most of these rules are
only concerned with performing the focusing transformation on all subexpressions, but some of
the clauses where something interesting happens are the clauses for binary operators:

F (⊙(𝑝1, 𝑝2, 𝑐)) ≔ ⟨F (𝑝1) | �̃�𝑥 .F (⊙(𝑥, 𝑝2, 𝑐))⟩ (𝑝1 not a value)
F (⊙(𝔭, 𝑝, 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (⊙(𝔭, 𝑥, 𝑐))⟩ (𝑝 not a value)

F (⊙(𝔭1,𝔭2, 𝑐)) ≔ ⊙(F (𝔭1), F (𝔭2), F (𝑐))

The first two clauses look for the arguments of the binary operator ⊙ which are not values and
use the trick described above to lift them to the outside. Focusing is invoked recursively until the
binary operator is only applied to values and the third clause comes into play. This third clause
then applies the focusing transformation to all arguments of the binary operator. The clauses for
constructors, destructors, ifz and calls to top-level definitions work in precisely the same way as
those for binary operators. It is noteworthy that by focusing the producer arguments of destructors
we guarantee that the evaluation rule for codata types can fire. If we had not required the producer

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:15

arguments to be values in that rule (but only that the destructor is a covalue), we could easily
introduce an unfocused term again by substituting a non-value for a variable.

Definition 3.2 (Static Focusing). Static focusing is done using the following rules:
Producers

F (⌜𝑛⌝) ≔ ⌜𝑛⌝
F (𝑥) ≔ 𝑥

F (𝜇𝛼.𝑠) ≔ 𝜇𝛼.F (𝑠)
F (𝐾 (𝔭, 𝑝, 𝑝; 𝑐)) ≔ 𝜇𝛼.⟨F (𝑝) | �̃�𝑥 .⟨F (𝐾 (𝔭, 𝑥, 𝑝, 𝑐)) | 𝛼⟩⟩ (𝑝 not a value)

(𝛼, 𝑥 fresh)
F (𝐾 (𝔭; 𝑐)) ≔ 𝐾 (F (𝔭);F (𝑐))

F (cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ cocase {𝐷 (𝑥 ;𝛼) ⇒ F (𝑠)}
Consumers

F (𝛼) ≔ 𝛼
F (�̃�𝑥 .𝑠) ≔ �̃�𝑥 .F (𝑠)

F (case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ case {𝐾 (𝑥 ;𝛼) ⇒ F (𝑠)}
F (𝐷 (𝔭, 𝑝, 𝑝, 𝑐)) ≔ �̃�𝑦.⟨F (𝑝) | �̃�𝑥 .⟨𝑦 | F (𝐷 (𝔭, 𝑥, 𝑝; 𝑐))⟩⟩ (𝑝 not a value)

(𝑥,𝑦 fresh)
F (𝐷 (𝔭; 𝑐)) ≔ 𝐷 (F (𝔭);F (𝑐))

Statements
F (⟨𝑝 | 𝑐⟩) ≔ ⟨F (𝑝) | F (𝑐)⟩

F (⊙(𝑝1, 𝑝2, 𝑐)) ≔ ⟨F (𝑝1) | �̃�𝑥 .F (⊙(𝑥, 𝑝2, 𝑐))⟩ (𝑝1 not a value), (𝑥 fresh)
F (⊙(𝔭, 𝑝, 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (⊙(𝔭, 𝑥, 𝑐))⟩ (𝑝 not a value), (𝑥 fresh)

F (⊙(𝔭1,𝔭2, 𝑐)) ≔ ⊙(F (𝔭1), F (𝔭2), F (𝑐))
F (ifz(𝑝, 𝑠1, 𝑠2)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (ifz(𝑥, 𝑠1, 𝑠2))⟩ (𝑝 not a value), (𝑥 fresh)
F (ifz(𝔭, 𝑠1, 𝑠2)) ≔ ifz(F (𝔭), F (𝑠1), F (𝑠2))
F (f(𝔭, 𝑝, 𝑝; 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (𝑓 (𝔭, 𝑥, 𝑝; 𝑐))⟩ (𝑝 not a value), (𝑥 fresh)

F (f(𝔭, 𝑐)) ≔ f(F (𝔭), F (𝑐))

The focusing transformation described in Definition 3.2 is not ideal since it creates a lot of ad-
ministrative redexes. As an example, consider how the statement defining mult’ from Example 2.7
is focused:
F (⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾); 𝛽))}⟩)
= ⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ⟨𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾) | �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)⟩)}⟩

Focusing has introduced the administrative redex ⟨𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾) | �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)⟩ in the second
statement of the ifz. After reducing this redex to mult’(𝑥𝑠 ;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)), we finally arrive at the
result from the introduction. In the implementation, we solve this problem by statically reducing
administrative redexes in a simplification step, but it is also possible to come up with a more
elaborate definition of focusing which does not create them in the first place. Such an optimized
focusing transformation is, however, much less transparent than the one we have described.

4 Typing Rules
In this section, we introduce the typing rules for Fun in Section 4.1 and for Core in Section 4.2. In
Section 4.3 we state type soundness for both languages and prove that the translation from Fun
to Core preserves the typeability of programs. We use the same constructors, destructors, types

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:16 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

and typing contexts for both Fun and Core, which are summarized in Definition 4.1. Note that we
distinguish between producer and consumer variables in the typing contexts, which we indicate
with the prd and cns annotations.

Definition 4.1 (Types and Typing Contexts).
𝐾 F Nil | Cons | Tup Constructors
𝐷 F hd | tl | fst | snd | ap Destructors
𝜏 F Int | List(𝜏) | Pair(𝜏, 𝜏) | Stream(𝜏) | LPair(𝜏, 𝜏) | 𝜏 → 𝜏 Types
Γ F ∅ | Γ, 𝑥 :prd 𝜏 | Γ, 𝛼 :cns 𝜏 Typing Contexts

We specialize the rules for data types to the concrete types Pair and List, and the rules for
codata types to LPair, Stream and functions 𝜎 → 𝜏 . A realistic programming language would
use type declarations introduced by the programmer to typecheck data and codata types instead
of using these special cases. But the formalization of such a general mechanism for specifying
data and codata types makes the typing rules less readable. This kind of mechanism for specifying
algebraic data and codata types in sequent-calculus-based languages can be found in [Downen
et al. 2015] or [Downen and Ariola 2020, section 8]. In all of the typing rules below we assume that
we have a program environment which contains type declarations for all the definitions contained
in the program, but don’t explicitly thread this program environment through each of the typing
rules.

4.1 Typing Rules for Fun
We don’t discuss the typing rules for Fun in detail since they are mostly standard. Instead, we
provide the full rules in Appendix B. The language Fun only has one syntactic category, terms,
so we only need one typing judgment Γ ⊢ 𝑡 : 𝜏 . This typing judgment says that in the context Γ
(which contains type assignments for both variables and covariables) the term 𝑡 has type 𝜏 . The
only two interesting rules concern the control operators label and goto:

Γ, 𝛼 :cns 𝜏 ⊢ 𝑡 : 𝜏 Label
Γ ⊢ label 𝛼 {𝑡} : 𝜏

Γ ⊢ 𝑡 : 𝜏 𝛼 :cns 𝜏 ∈ Γ Goto
Γ ⊢ goto(𝑡 ;𝛼) : 𝜏 ′

In the rule Label we add the covariable 𝛼 :cns 𝜏 to the typing context which is used to typecheck
the term 𝑡 . The labeled expression label 𝛼 {𝑡} can return in only one of two ways: either the term
𝑡 is evaluated to a value and returned, or a jump instruction is used to jump to the label 𝛼 . For this
reason, the term 𝑡 and the label 𝛼 must have the same type 𝜏 , which is also the type for the labeled
expression itself.

In the rule Goto we require that the covariable 𝛼 is in the context with type 𝜏 , and that the
term 𝑡 can be typechecked with the same type. The term goto(𝑡 ;𝛼) itself can be used at any type
𝜏 ′ because it does not return to its immediately surrounding context.

4.2 Typing Rules for Core
The complete typing rules for Core are given in Figure 2, but we will present them step by step.
We now have producers, consumers and statements as different syntactic categories. For each of
these categories, we use a separate judgment form:
Producers The judgment Γ ⊢ 𝑝 :prd 𝜏 says that the producer 𝑝 has type 𝜏 in context Γ.
Consumers The judgment Γ ⊢ 𝑐 :cns 𝜏 says that the consumer 𝑐 has type 𝜏 in context Γ.
Statements The judgment Γ ⊢ 𝑠 says that the statement 𝑠 is well-typed in context Γ. In contrast

to producers and consumers, statements do not have a type.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:17

Γ, 𝛼 :cns 𝜏 ⊢ 𝑠 𝜇
Γ ⊢ 𝜇𝛼.𝑠 :prd 𝜏

Γ, 𝑥 :prd 𝜏 ⊢ 𝑠
�̃�

Γ ⊢ �̃�𝑥 .𝑠 :cns 𝜏
𝑥 :prd 𝜏 ∈ Γ VaR1
Γ ⊢ 𝑥 :prd 𝜏

𝛼 :cns 𝜏 ∈ Γ VaR2Γ ⊢ 𝛼 :cns 𝜏

Γ ⊢ 𝑝 :prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏
Cut

Γ ⊢ ⟨𝑝 | 𝑐⟩
Γ ⊢ 𝑝 :prd Int Γ ⊢ 𝑠1 Γ ⊢ 𝑠2 IfZ

Γ ⊢ ifz(𝑝, 𝑠1, 𝑠2)

Lit
Γ ⊢ ⌜𝑛⌝ :prd Int

Γ ⊢ 𝑝1 :prd Int Γ ⊢ 𝑝2 :prd Int Γ ⊢ 𝑐 :cns Int binop
Γ ⊢ ⊙(𝑝1, 𝑝2; 𝑐)

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :cns 𝜏 𝑗) ∈ 𝑃 Γ ⊢ 𝑝𝑖 :prd 𝜏𝑖 Γ ⊢ 𝑐 𝑗 :cns 𝜏 𝑗 Call
Γ ⊢𝑃 𝑓 (𝑝𝑖 ; 𝑐 𝑗)

Γ ⊢ 𝑠1 Γ, 𝑥 :prd 𝜏, 𝑥𝑠 :prd List(𝜏) ⊢ 𝑠2 Case-List
Γ ⊢ case {Nil ⇒ 𝑠1, Cons(𝑥, 𝑥𝑠) ⇒ 𝑠2} :cns List(𝜏)

Nil
Γ ⊢ Nil :prd List(𝜏)

Γ ⊢ 𝑡1 :prd 𝜏 Γ ⊢ 𝑡2 :prd List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) :prd List(𝜏)

Γ ⊢ 𝑡1 :prd 𝜏1 Γ ⊢ 𝑡2 :prd 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) :prd Pair(𝜏1, 𝜏2)

Γ, 𝑥 :prd 𝜏1, 𝑦 :prd 𝜏2 ⊢ 𝑠 Case-PaiR
Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏 Hd
Γ ⊢ hd(𝑘) :cns Stream(𝜏)

Γ ⊢ 𝑘 :cns Stream(𝜏)
Tl

Γ ⊢ tl(𝑘) :cns Stream(𝜏)

Γ, 𝛼 :cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :cns Stream(𝜏) ⊢ 𝑠2 Cocase-StReam
Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :prd Stream(𝜏)

Γ ⊢ 𝑘 :cns 𝜏1 Fst
Γ ⊢ fst(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏2 Snd
Γ ⊢ snd(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ, 𝛼 :cns 𝜏1 ⊢ 𝑠1 Γ, 𝛽 :cns 𝜏2 ⊢ 𝑠2 Cocase-LPaiR
Γ ⊢ cocase {fst(𝛼) ⇒ 𝑠1, snd(𝛽) ⇒ 𝑠2} :prd LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑝 :prd 𝜎 Γ ⊢ 𝑐 :cns 𝜏
Ap

Γ ⊢ ap(𝑝, 𝑐) :cns 𝜎 → 𝜏

Γ, 𝑥 :prd 𝜎, 𝛼 :cns 𝜏 ⊢ 𝑠 Cocase-Fun
Γ ⊢ cocase {ap(𝑥, 𝛼) ⇒ 𝑠} :prd 𝜎 → 𝜏

Wf-Empty⊢ ∅ OK
⊢ 𝑃 OK 𝑥 :prd 𝜏𝑖 , 𝛼 :cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :prd𝜏𝑖 ;𝛼 𝑗 :cns𝜏 𝑗)≔𝑠

𝑠
Wf-Cons

⊢ 𝑃, def f(𝑥𝑖 :prd 𝜏𝑖 , 𝛼 𝑗 :cns 𝜏 𝑗) ≔ 𝑠 OK

Fig. 2. Typing rules of Core.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:18 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

All typing judgments are also implicitly indexed by the program 𝑃 containing the top-level
definitions. However, as these definitions are only needed when typechecking their calls (rule
Call), we usually omit the index from the presentation.

The three different judgments can be illustrated by the rules for variables, covariables and cuts.
In the rules VaR1 and VaR2 we check that a variable or covariable is contained in the typing context
Γ and then type the variable as a producer or the covariable as a consumer. The rule Cut combines
a producer 𝑝 and consumer 𝑐 of the same type 𝜏 into the statement ⟨𝑝 | 𝑐⟩ which does not have a
type.

𝑥 :prd 𝜏 ∈ Γ VaR1
Γ ⊢ 𝑥 :prd 𝜏

𝛼 :cns 𝜏 ∈ Γ VaR2Γ ⊢ 𝛼 :cns 𝜏
Γ ⊢ 𝑝 :prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏

Cut
Γ ⊢ ⟨𝑝 | 𝑐⟩

The two unusual constructs which are central toCore and give the 𝜆𝜇�̃�-calculus its name are the
𝜇- and �̃�-abstractions. A 𝜇-abstraction 𝜇𝛼.𝑠 abstracts over a consumer 𝛼 of type 𝜏 in the statement
𝑠 and is typed as a producer of type 𝜏 . A �̃�-abstraction �̃�𝑥 .𝑠 abstracts over a producer 𝑥 of type 𝜏
and is typed as a consumer of type 𝜏 , which can be seen in the following two rules.

Γ, 𝛼 :cns 𝜏 ⊢ 𝑠 𝜇
Γ ⊢ 𝜇𝛼.𝑠 :prd 𝜏

Γ, 𝑥 :prd 𝜏 ⊢ 𝑠
�̃�

Γ ⊢ �̃�𝑥 .𝑠 :cns 𝜏

4.2.1 Data and Codata Types. Figure 2 contains the typing rules for both Pair and List; since
their rules are so similar we only discuss those of Pair explicitly:

Γ ⊢ 𝑡1 :prd 𝜏1 Γ ⊢ 𝑡2 :prd 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) :prd Pair(𝜏1, 𝜏2)

Γ, 𝑥 :prd 𝜏1, 𝑦 :prd 𝜏2 ⊢ 𝑠 Case-PaiR
Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

In the rule Tup we type a pair constructor Tup applied to two arguments as a producer, and in
the rule Case-PaiR we type the case, which pattern-matches on this constructor and brings two
variables into scope, as a consumer.

The typing rules for codata types look exactly the same, only the roles of producers and con-
sumers are swapped.

Γ ⊢ 𝑘 :cns 𝜏 Hd
Γ ⊢ hd(𝑘) :cns Stream(𝜏)

Γ, 𝛼 :cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :cns Stream(𝜏) ⊢ 𝑠2 Cc-StR
Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :prd Stream(𝜏)

Most of the other rules directly correspond to a similar rule for Fun. When typing arithmetic
expressions, for example, we only have to make sure all subterms have type Int.

We typecheck programs using the two rules Wf-Empty and Wf-Cons. The former is used to
typecheck an empty program, and the rule Wf-Cons extends a typechecked program with a new
top-level definition. When we typecheck the body of this top-level definition that we are about to
add, we extend the program with this definition so that it can refer to itself recursively.

4.3 Type Soundness
In this section, we discuss the soundness of the type systems for both Fun and Core and show
that the translation J−K preserves the typeability of terms. We follow Wright and Felleisen [1994]
in presenting type soundness as the combination of a progress and a preservation theorem.

TheoRem 4.1 (PRogRess, Fun). Let 𝑡 be a closed term in Fun, such that ⊢ 𝑡 : 𝜏 for some type 𝜏 .
Then either 𝑡 is a value or there is some term 𝑡 ′ such that 𝑡 ⊲ 𝑡 ′.

This can easily be proved with an induction on typing derivations. Due to the presence of the
label/goto construct, the standard formulation of the (strong) preservation theorem does not im-
mediately hold for Fun (also see the discussion in Appendix C).The following weak form of preser-
vation can again be easily proved by induction.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:19

TheoRem 4.2 ((WeaK) PReseRvation, Fun). Let 𝑡, 𝑡 ′ be terms in Fun such that 𝑡 ⊲ 𝑡 ′, Γ an envi-
ronment and 𝑃 a program such that Γ ⊢𝑃 𝑡 : 𝜏 . Then there is a type 𝜏 ′ such that Γ ⊢𝑃 𝑡 ′ : 𝜏 ′.

The usual strong preservation theorem requires 𝜏 ′ = 𝜏 . But in fact, a slight variation of this
strong form can be proved for Fun by adapting the technique found in Section 6 in [Wright and
Felleisen 1994]. Thus, strong type soundness still does hold.

Before we can state the analogous theorems for Core, we will need an additional definition as
a termination condition for evaluation.

Definition 4.3 (Terminal statement). If 𝔭 is a producer value in Core and ⋆ a covariable which
does not appear free in 𝔭, then ⟨𝔭 | ⋆⟩ is called a terminal statement.

Terminal statements inCore have the same role as values in Fun. Some sequent-calculus-based
languages use a special statement Done instead of terminal statements for this purpose.

TheoRem 4.4 (PRogRess, CoRe). Let 𝑠 be a focused statement in Core such that ⊢ 𝑠 . Then either
𝑠 is a terminal statement, or there is some 𝑠′ such that 𝑠 ⊲ 𝑠′.

For this theorem, we require 𝑠 to be focused, in contrast to Fun, where progress holds for any
(well-typed) term. This is because we have used static focusing for full evaluation in Core. If we
used dynamic focusing instead, this requirement could be dropped, corresponding to using evalu-
ation contexts (dynamic) in Fun, instead of a translation to normal form (static).

The Preservation theorem for Core is analogous to Fun.

TheoRem 4.5 (PReseRvation,CoRe). Let 𝑠, 𝑠′ be statements in Core with 𝑠 ⊲𝑠′, Γ an environment
and 𝑃 a program. If Γ ⊢𝑃 𝑠 , then Γ ⊢𝑃 𝑠′.

This theorem can also be proven with a straightforward induction on typing derivations. Of
course, this preservation theorem does not make any assertion about result types, as statements
do not return anything that could be typed. However, if evaluation starts with a statement ⟨𝑝 | ⋆⟩
where ⋆ does not occur free in 𝑝 and ends in a terminal statement 𝑠 , then 𝑠 = ⟨𝔭 | ⋆⟩ for some
producer value 𝔭. This is because no reduction step can introduce a free variable, so the final one
must be the same as the initial one. Hence, by well-typedness, if 𝑝 :prd 𝜏 , then also 𝔭 :prd 𝜏 , because
⋆ :cns 𝜏 .

Lastly, we come to an important property of the translation between these languages:

TheoRem 4.6 (Type PReseRvation of TRanslation). Let 𝑡 be a term in Fun, Γ an environment
and 𝑃 a program. If Γ ⊢𝑃 𝑡 : 𝜏 for some type 𝜏 , then Γ ⊢J𝑃K J𝑡K :prd 𝜏 where J𝑃K denotes the translation
of all definitions in 𝑃 .

PRoof. Most cases are straightforward in the proof which proceeds by a structural induction
on the typing derivation. The interesting cases are when the typing derivation types a control
operator. The only rule in Fun with label 𝛼 {𝑡1} in the conclusion is Label. This rule has the
premise Γ, 𝛼 :cns 𝜏 ⊢ 𝑡1 : 𝜏 , and applying the induction hypothesis gives Γ, 𝛼 :cns 𝜏 ⊢ J𝑡1K :prd 𝜏 . Then
we can derive J𝑡K = 𝜇𝛼.⟨J𝑡1K | 𝛼⟩ :prd 𝜏 :

(Induction Hypothesis)
Γ, 𝛼 :cns 𝜏 ⊢ J𝑡1K :prd 𝜏 VaR2Γ, 𝛼 :cns 𝜏 ⊢ 𝛼 :cns 𝜏

Cut
Γ, 𝛼 :cns 𝜏 ⊢ ⟨J𝑡1K | 𝛼⟩

𝜇
Γ ⊢ 𝜇𝛼.⟨J𝑡1K | 𝛼⟩ :prd 𝜏

The only rule with goto(𝑡1;𝛼) in the conclusion is Goto, which has premises Γ ⊢ 𝑡1 : 𝜏 and
𝛼 :cns 𝜏 ∈ Γ. Applying the induction hypothesis gives Γ ⊢ J𝑡1K :prd 𝜏 , and we can therefore type

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:20 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

the translation of the translation as follows (where we implicitly use weakening, which is allowed
since 𝛽 is fresh)

(Induction Hypothesis)
Γ, 𝛽 :cns 𝜎 ⊢ J𝑡1K :prd 𝜏 𝛼 :cns 𝜏 ∈ Γ, 𝛽 :cns 𝜎

VaR2
Γ, 𝛽 :cns 𝜎 ⊢ 𝛼 :cns 𝜏

Cut
Γ, 𝛽 :cns 𝜎 ⊢ ⟨J𝑡1K | 𝛼⟩

𝜇
Γ ⊢ 𝜇𝛽.⟨J𝑡1K | 𝛼⟩ :prd 𝜏

□

5 Insights
In the previous section, we have explainedwhat the 𝜆𝜇�̃�-calculus is, and how it works. Now that we
know the what and howwe can explainwhy this calculus is so interesting.This section is therefore
a small collection of independent insights. To be clear, these insights are obvious to those who are
deeply familiar with the 𝜆𝜇�̃�-calculus, but we can still recall how surprising they were for us when
we first learned about them.

5.1 Evaluation Contexts are First Class
A central feature of the 𝜆𝜇�̃�-calculus is the treatment of evaluation contexts as first-class objects,
as we have mentioned before. For example, consider the term (⌜2⌝ ∗ ⌜3⌝) ∗ ⌜4⌝ in Fun. When
we want to evaluate this, we have to use the evaluation context □ ∗ ⌜4⌝ to evaluate the subterm
(⌜2⌝ ∗⌜3⌝) and get ⌜6⌝ ∗⌜4⌝ which we can then evaluate to ⌜24⌝. Translating this term intoCore
gives 𝜇𝛼. ∗ (𝜇𝛽. ∗ (⌜2⌝, ⌜3⌝; 𝛽), ⌜4⌝;𝛼). To evaluate this term, we first need to focus it giving

𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜3⌝; 𝛽) | �̃�𝑥 . ∗ (𝑥, ⌜4⌝;𝛼)⟩
When we now start evaluating with ⋆, the steps are the same as in Fun. Using call-by-value,
the 𝜇-abstraction is evaluated first, giving ∗(⌜2⌝, ⌜3⌝; ∗(�̃�𝑥 . ∗ (𝑥, ⌜4⌝;⋆)). This now has the form
where the product can be evaluated to ⟨⌜6⌝ | �̃�𝑥 . ∗ (𝑥, ⌜4⌝;⋆)⟩, after which ⌜6⌝ is substituted for
𝑥 . The term ∗(⌜6⌝, ⌜4⌝;⋆) can then be directly evaluated to ⌜24⌝.

After focusing, we can see how 𝛽 is a variable that stands for the evaluation context in Fun. The
term �̃�𝑥 . ∗ (𝑥, ⌜4⌝;𝛼) is the first-class representation of the evaluation context □ ∗ ⌜4⌝. We first
evaluate the subexpression ∗(⌜2⌝, ⌜3⌝; 𝛽) and then insert the result into ∗(𝑥, ⌜4⌝;⋆) to finish the
evaluation, as we did in Fun. In other words, the □ of an evaluation context in Fun, corresponds to
a continuation 𝛽 in Core, and similarly determines in which order subexpressions are evaluated.

5.2 Data is Dual to Codata
The sequent calculus clarifies the relation between data and codata as being exactly dual to each
other. When looking at the typing rules in Figure 2, we can see that data and codata types are
completely symmetric. The two are not symmetric in languages based on natural deduction: A
pattern match on data types includes the scrutinee but there is no corresponding object in the
construction of codata. Similarly, invoking a destructor 𝐷 of a codata type always includes the
codata object 𝑥 to be destructed, e.g., 𝑥 .𝐷 (. . .), whereas the invocation of the constructor of a data
type has no corresponding object.

This asymmetry is fixed in the sequent calculus. Destructors (such as fst) are first-class and
don’t require a scrutinee, which repairs the symmetry to constructors. Similarly, pattern matches
(case {. . .}) do not require an object to destruct, which makes them completely symmetrical to
copattern matches. This duality reduces the conceptual complexity and opens the door towards
shared design and implementation of features of data and codata types.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:21

5.3 Let-Bindings are Dual to Control Operators
The label construct in Fun is translated to a 𝜇-binding in Core. Also, when considering the typing
rule for label 𝛼 {𝑡} in Section 4.1, we can see that it directly corresponds to typing a 𝜇-binding
with the label 𝛼 being the bound covariable. Similarly, a let-binding is translated to a �̃�-binding
and typing a let-binding in Fun closely corresponds to typing a �̃�-term in Core. This way, labels
and let-bindings are dual to each other, the same way 𝜇 and �̃� are. The duality can be extended to
other control operators such as call/cc.

As it turns out, the label construct is very closely related to call/cc. There are in fact only two
differences. First, label 𝛼 {𝑡} has the binder 𝛼 for the continuation built into the construct, just
as the variation of call/cc named let/cc (which Reynolds [1972] called escape). The second,
and more important difference is that the invocation of the continuation captured by label 𝛼 {𝑡}
happens through an explicit language construct goto(𝑡 ;𝛼). This makes it easy to give a translation
toCore as we can simply insert another 𝜇-binding to discard the remaining continuation at exactly
the place where the captured continuation is invoked. In contrast, with call/cc and let/cc the
continuation is applied in the same way as a normal function, making it necessary to redefine the
variable the captured continuation is bound to when translating toCore. This obscures the duality
to let-bindings which is so evident for label and goto.

To see this, here is a translation of let/cc 𝑘 𝑡 to Core

Jlet/cc 𝑘 𝑡K ≔ 𝜇𝛼.⟨cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩} | �̃�𝑘 .⟨J𝑡K | 𝛼⟩⟩

The essence of the translation still is that the current continuation is captured by the outer 𝜇 and
bound to 𝛼 . But now we also have to transform this 𝛼 into a function (the cocase here) which
discards its context (here bound to 𝛽) and bind this function to 𝑘 , which is done using �̃�. For
call/cc, the duality is even more obscured, as there the binder for the continuation is hidden in
the function which call/cc is applied to. For the translation, this function must then be applied to
the above cocase and the captured continuation 𝛼 , resulting in the following term (cf. also [Miquey
2019]).

Jcall/cc 𝑓 K ≔ 𝜇𝛼.⟨J𝑓 K | ap(cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩}, 𝛼)⟩

Other control operators for undelimited continuations can be translated in a similar way. For ex-
ample, consider Felleisen’s C [Felleisen et al. 1987].The difference to call/cc is that C discards the
current continuation if it is not invoked somewhere in the term C is applied to, whereas call/cc
leaves it in place and thus behaves as a no-op if the captured continuation is never invoked. The
only change that needs to be made in the translation to Core is that the top-level continuation⋆
has to be used for the outer cut instead of using the captured continuation. This is most easily seen
for a variation of C which has the binder for the continuation built into the operator and where
the invocation of the continuation is explicit, similar to label/goto. Calling this variation labelC ,
we obtain the following translation

JlabelC 𝛼 {𝑡}K ≔ 𝜇𝛼.⟨J𝑡K | ⋆⟩

Here the duality to let-bindings is evident again. The translation for C itself is then obtained in
the same way as for call/cc

JC 𝑓 K ≔ 𝜇𝛼.⟨J𝑓 K | ap(cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩},⋆)⟩

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:22 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

5.4 The Case-of-Case Transformation
One important transformation in functional compilers is the case-of-case transformation. Maurer
et al. [2017] give the following example of this transformation. The term

if (if 𝑒1 then 𝑒2 else 𝑒3) then 𝑒4 else 𝑒5
can be replaced by the term

if 𝑒1 then (if 𝑒2 then 𝑒4 else 𝑒5) else (if 𝑒3 then 𝑒4 else 𝑒5).
Logicians call these kinds of transformations commutative conversions, and they play an important
role in the study of the sequent calculus. But as Maurer et al. [2017] show, they are also important
for compiler writers who want to generate efficient code.

In the 𝜆𝜇�̃�-calculus, commuting conversions don’t have to be implemented as a special compiler
pass. They fall out for free as a special instance of 𝜇-reductions! Let us illustrate this point by
translating Maurer et al.’s example into the 𝜆𝜇�̃�-calculus. First, let us translate the two examples
using pattern-matching syntax:

case (case 𝑒1 of {T ⇒ 𝑒2; F ⇒ 𝑒3}) of {T ⇒ 𝑒4; F ⇒ 𝑒5}
case 𝑒1 of {T ⇒ case 𝑒2 of {T ⇒ 𝑒4; F ⇒ 𝑒5}; F ⇒ case 𝑒3 of {T ⇒ 𝑒4; F ⇒ 𝑒5}}

Let us now translate these two terms into the 𝜆𝜇�̃�-calculus:
𝜇𝛼.⟨𝜇𝛽.⟨J𝑒1K | case {T ⇒ ⟨J𝑒2K | 𝛽⟩; F ⇒ ⟨𝑒3 | 𝛽⟩}⟩ | case {T ⇒ ⟨J𝑒4K | 𝛼⟩, F ⇒ ⟨J𝑒5K | 𝛼⟩}⟩
𝜇𝛼.⟨J𝑒1K|case {

T ⇒ ⟨𝜇𝛽.⟨J𝑒2K | case {T ⇒ ⟨J𝑒4K | 𝛽⟩, F ⇒ ⟨J𝑒5K | 𝛽⟩}⟩ | 𝛼⟩
F ⇒ ⟨𝜇𝛽.⟨J𝑒3K | case {T ⇒ ⟨J𝑒4K | 𝛽⟩, F ⇒ ⟨J𝑒5K | 𝛽⟩}⟩ | 𝛼⟩}⟩

We can see that just by reducing all of the underlined redexes we reduce both of these examples
to the same term.

5.5 Direct and Indirect Consumers
As mentioned in the introduction, a natural competitor of sequent calculus as an intermediate rep-
resentation is continuation-passing style (CPS). In CPS, reified evaluation contexts are represented
by functions. This makes the resulting types of programs in CPS arguably harder to understand.
There is, however, another advantage of sequent calculus over CPS as described by Downen et al.
[2016]. The first-class representation of consumers in sequent calculus allows us to distinguish be-
tween two different kinds of consumers: direct consumers, i.e., destructors, and indirect consumers.
In particular, this allows to chain direct consumers in Core in a similar way as in Fun.

Suppose we have a codata type with destructors get and set for getting and setting the value
of a reference. Now consider the following chain of destructor calls on a reference 𝑟 in Fun

𝑟 .set(3).set(4).get()
A compiler could use a user-defined custom rewrite rule for rewriting two subsequent calls to set
into only the second call. In Core the above example looks as follows:

𝜇𝛼.⟨𝑟 | set(3; set(4; get(𝛼)⟩
We still can immediately see the direct chaining of destructors and thus apply essentially the same
rewrite rule. In CPS, however, the example would rather become

𝜆𝑘. 𝑟 .set(3; 𝜆𝑠. 𝑠 .set(4; 𝜆𝑡 . 𝑡 .get(𝑘)))

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:23

The chaining of the destructors becomes obfuscated by the indirections introduced by representing
the continuations for each destructor as a function. To apply the custom rewrite rule mentioned
above, it is necessary to see through the lambdas, i.e. the custom rewrite rule has to be transformed
to be applicable.

5.6 Call-by-Value, Call-by-Name and Eta-Laws
In Section 2.2 we already pointed out the existence of statements ⟨𝜇𝛼.𝑠1 | �̃�𝑥 .𝑠2⟩ which are called
critical pairs because they can a priori be reduced to either 𝑠1 [�̃�𝑥 .𝑠2/𝛼] or 𝑠2 [𝜇𝛼.𝑠1/𝑥]. These crit-
ical pairs were already discussed by Curien and Herbelin [2000] when they introduced the 𝜆𝜇�̃�-
calculus. One solution is to pick an evaluation order, either call-by-value (cbv) or call-by-name
(cbn), that determines to which of the two statements we should evaluate, and in this paper we
chose to always use the call-by-value evaluation order. The difference between these two choices
has also been discussed by Wadler [2003]. Note that this freedom for the evaluation strategy is
another advantage of sequent calculus over continuation-passing style, as the latter always fixes
an evaluation strategy.

Which evaluation order we choose has an important consequence for the optimizations we are
allowed to perform in the compiler. If we choose call-by-value, then we are not allowed to use
all 𝜂-equalities for codata types, and if we use call-by-name, then we are not allowed to use all 𝜂-
equalities for data types. Let us illustrate the problem in the case of codata types with the following
example:

⟨cocase {ap(𝑥 ;𝛼) ⇒ ⟨𝜇𝛽.𝑠1 | ap(𝑥 ;𝛼)⟩} | �̃�𝑥 .𝑠2⟩ ≡𝜂 ⟨𝜇𝛽.𝑠1 | �̃�𝑥 .𝑠2⟩
We assume that 𝑥 and 𝛼 do not appear free in 𝑠1. The 𝜂-transformation is just the ordinary 𝜂-law
for functions but applied to the representation of functions as codata types. The statement on the
left-hand side reduces the �̃� first under both call-by-value and call-by-name evaluation order, i.e.

⟨cocase {ap(𝑥 ;𝛼) ⇒ ⟨𝜇𝛽.𝑠1 | ap(𝑥 ;𝛼)⟩} | �̃�𝑥 .𝑠2⟩
⊲cbv 𝑠2 [cocase {. . .}/𝑥]
⊲cbn 𝑠2 [cocase {. . .}/𝑥]

The right-hand side of the 𝜂-equality, however, reduces the 𝜇 first under call-by-value evaluation
order, i.e.

⟨𝜇𝛽.𝑠1 | �̃�𝑥 .𝑠2⟩
⊲cbv 𝑠1 [�̃�𝑥 .𝑠2/𝛽]
⊲cbn 𝑠2 [𝜇𝛽.𝑠1/𝑥]

Therefore, the 𝜂-equality is only valid under call-by-name evaluation order. This example shows
that the validity of applying this 𝜂-rule as an optimization depends on whether the language uses
call-by-value or call-by-name. If we instead used a data type such as Pair, a similar 𝜂-reduction
would only give the same result as the original statement when using call-by-value.

5.7 Linear Logic and the Duality of Exceptions
Wehave introduced the data type Pair(𝜎, 𝜏) and the codata type LPair(𝜎, 𝜏) as two different ways
to formalize tuples. The data type Pair(𝜎, 𝜏) is defined by the constructor Tup whose arguments
are evaluated eagerly, so this type corresponds to strict tuples in languages like ML or OCaml. The
codata type LPair(𝜎, 𝜏) is a lazy pair which is defined by its two projections fst and snd, and only
when we invoke the first or second projection do we start to compute its contents. This is closer
to how tuples behave in a lazy language like Haskell.

Linear logic [Girard 1987; Wadler 1990] adds another difference to these types. In linear logic
we consider arguments as resources which cannot be arbitrarily duplicated or discarded; every ar-
gument to a function has to be used exactly once. If we follow this stricter discipline, then we have
to distinguish between two different types of pairs: In order to use a pair 𝜎 ⊗𝜏 (pronounced “times”
or “tensor”), we have to use both the 𝜎 and the 𝜏 , but if we want to use a pair 𝜎 & 𝜏 (pronounced

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:24 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

“with”), we must choose to either use the 𝜎 or the 𝜏 . It is now easy to see that the type 𝜎 ⊗ 𝜏 from
linear logic corresponds to the data type Pair(𝜎, 𝜏), since when we pattern match on this type we
get two variables in the context, one for 𝜎 and one for 𝜏 . The type 𝜎&𝜏 similarly corresponds to the
type LPair(𝜎, 𝜏) which we use by invoking either the first or the second projection, consuming
the whole pair.

In addition to these two different kinds of conjunction, we also have two different kinds of
disjunction. These two disjunctions are written 𝜎 ⊕ 𝜏 (pronounced “plus”) and 𝜎 ` 𝜏 (pronounced
“par”) and correspond to two different ways to handle errors in programming languages. Their
typing rules in Core are:

Γ ⊢ 𝑡 :prd 𝜎
Γ ⊢ Inl(𝑡) :prd 𝜎 ⊕ 𝜏

Γ ⊢ 𝑡 :prd 𝜏
Γ ⊢ Inr(𝑡) :prd 𝜎 ⊕ 𝜏

Γ, 𝑥 :prd 𝜎 ⊢ 𝑠1 Γ, 𝑦 :prd 𝜏 ⊢ 𝑠2
Γ ⊢ case {Inl(𝑥) ⇒ 𝑠1, Inr(𝑦) ⇒ 𝑠2} :cns 𝜎 ⊕ 𝜏

Γ ⊢ 𝑐1 :cns 𝜎 Γ ⊢ 𝑐2 :cns 𝜏
Γ ⊢ Par(𝑐1, 𝑐2) :cns 𝜎 ` 𝜏

Γ, 𝛼 :cns 𝜎, 𝛽 :cns 𝜏 ⊢ 𝑠
Γ ⊢ cocase {Par(𝛼, 𝛽) ⇒ 𝑠} :prd 𝜎 ` 𝜏

Languages like Rust and Haskell use 𝜎 ⊕ 𝜏 for error handling, which corresponds to the “Either”
and “Result” types in those languages.This corresponds to the calling convention that the function
returns a tagged result which indicates whether an error has occurred or not, and the caller of
the function has to check this tag. The type 𝜎 ` 𝜏 behaves differently: A function which returns
a value of type 𝜎 ` 𝜏 has to be called with two continuations, one for the possibility that the
function returns successfully and one for the possibility that the function throws an error. And
the function itself decides which continuation to call, so there is no overhead for checking the
result of a function call. This is quite similar to how some functions in Javascript are called with
an “onSuccess” continuation and an “onFailure” continuation and different to the exception model
of, e.g., Java, where the exception handler is dynamically scoped instead of lexically passed as an
argument. This duality between the two different ways of handling exceptions can be seen most
clearly in the sequent calculus; more details on this duality can be found in section 3.4 of [Spiwack
2014] or in section 7.1 of [Ostermann et al. 2022].

6 Related Work
The central ideas of the calculi that we have presented in this pearl are not novel: the 𝜆𝜇�̃�-calculus
is by now over 20 years old. We chose a variant of this calculus that can be used as a starting point
to explore all the variants that have been described in the literature. This related work section is
therefore intended to provide suggestions for further reading and the chance to dive deeper into
specific topics that we have only touched upon.

6.1 The Sequent Calculus
Thebasis of our languageCore is a term assignment system for the sequent calculus, an alternative
logical system to natural deduction. The sequent calculus was originally introduced by Gentzen
in the articles Gentzen [1935a,b, 1969]. For a more thorough introduction to the sequent calculus
as a logical system, we can recommend the books by Negri and Von Plato [2001] and Troelstra
and Schwichtenberg [2000] which introduce the sequent calculus and show how it differs from
the natural deduction systems that are more commonly taught.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:25

6.2 Term Assignment for the Sequent Calculus
Theoriginal article which introduced the 𝜆𝜇�̃�-calculus as a term assignment system for the sequent
calculus was by Curien and Herbelin [2000]. Before we list some of the other articles, we should
preface them with the following remark on notation:

Remark 1 (Alternative Notation). Our notation for producers, consumers and statements follows
the established conventions in the literature. However, we diverge in the way that we write typ-
ing judgments from the example of Curien and Herbelin [2000] which is followed by most other
authors. We use one typing context Γ which binds both variables 𝑥 :prd 𝜏 and covariables 𝛼 :cns 𝜏 ,
whereas Curien and Herbelin [2000] use two contexts; a context Γ which contains bindings for
all variables and a context Δ which contains the bindings for all covariables. The following table
summarizes the difference between their notation and the notation used in our paper.

Judgment Form Our notation Curien and Herbelin [2000]
Typing Producers Γ ⊢ 𝑝 :prd 𝜏 Γ ⊢ 𝑝 : 𝜏 | Δ
Typing Consumers Γ ⊢ 𝑐 :cns 𝜏 Γ | 𝑐 : 𝜏 ⊢ Δ
Typing Statements Γ ⊢ 𝑠 𝑠 : (Γ ⊢ Δ)

The reasons for this divergence are easily explained.The notation of Curien and Herbelin [2000]
with its two contexts Γ and Δ perfectly illustrates the correspondence to the sequent calculus
which operates with sequents Γ ⊢ Δ which contain multiple formulas on the left- and right-hand
side of the turnstile. This close correspondence to the sequent calculus is less important for us. We
found that splitting the context in this way often makes it more difficult to write down rules in
their full generality when we extend the language with other features. Features which introduce
a dependency of later bindings on earlier bindings within a typing context, for example when we
add parametric polymorphism, don’t fit easily into the format of Curien and Herbelin [2000].

With these remarks out of theway,we can recommend the articles by Zeilberger [2008], Downen
and Ariola [2014, 2018b, 2020], Munch-Maccagnoni [2009] and Spiwack [2014] which were very
helpful to us when we learned about the 𝜆𝜇�̃�-calculus.

6.3 Codata Types
Codata types were originally invented by Hagino [1989]. They had the most success in proof assis-
tants such as Agda where they help circumvent certain technical problems that arise when we try
to model coinductive types. Copattern matching as a way to create producers of codata types was
popularized by Abel et al. [2013], although the basic idea of the concept had been around before
that, see, e.g., [Zeilberger 2008]. But probably the best starting point to learn more about codata
types is an article written by Downen et al. [2019].

6.4 Control Operators and Classical Logic
The label/goto construct that we are using in Fun is an example of a control operator, of which
Landin’s operator J [Felleisen 1987; Landin 1965; Thielecke 1998] likely is the oldest. Their transla-
tion into Core uses 𝜇-abstractions, which are also a form of control operator that was originally
introduced by Parigot [1992] before it became a part of the 𝜆𝜇�̃�-calculus of Curien and Herbelin
[2000]. Control operators have an important relationship to classical logic via the Curry-Howard
isomorphism. This relationship was discovered by Griffin [1989]; a more thorough introduction
can be found in Sørensen and Urzyczyn [2006].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:26 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

6.5 Different Evaluation Orders
We have already talked about the evaluation strategies call-by-value and call-by-name, and how
their difference can be explained by different choices of how a critical pair should be evaluated.
This duality between call-by-value and call-by-name has already been observed by Filinski [1989]
and has been explored in more detail by Wadler [2003, 2005]. We have also seen in Section 5.6
how 𝜂-reduction only works with data types in call-by-value and with codata types in call-by-
name. A lot of people therefore conclude that the choice of an evaluation order should maybe
not be a global decision, but should instead depend on the type. This approach requires tracking
the polarity of types and providing additional shift connectives which help mediate between the
different evaluation orders; the article by Downen and Ariola [2018a] is a good entry point for
pursuing these kinds of questions which are discussed in detail in [Zeilberger 2009] and [Munch-
Maccagnoni 2013]. A well-known example of mixing evaluation orders is the call-by-push-value
paradigm [Levy 1999] which distinguishes value types and computation types and subsumes both
call-by-value and call-by-name.

7 Conclusion
In this functional pearl, we have presented the 𝜆𝜇�̃�-calculus in the way we introduce it to our
colleagues and students on the whiteboard; by compiling small examples of functional programs.
We think this is a better way to introduce programming-language enthusiasts and compiler writers
to the 𝜆𝜇�̃�-calculus, since it doesn’t require prior knowledge of the sequent calculus. We have also
shown why we are excited about this calculus, by giving examples of how it allows us to express
aspects like strict vs. lazy evaluation or compiler optimizations like case-of-case in an extremely
clear way.Wewant to share our enthusiasm for the sequent calculus and languages built on it with
more people, and with this pearl, we hope that others will start to write their own little compilers
to the sequent calculus and explore the exciting possibilities it offers.

Data Availability Statement
This paper is accompanied by an implementation in Haskell. The latest version of that implemen-
tation is hosted at https://github.com/grokking-sc/grokking-sc. The archived version of the imple-
mentation which also contains a VM image is available on Zenodo [Binder et al. 2024].

Acknowledgments
We would like to thank the anonymous reviewers and Paul Downen for their feedback which
helped us greatly in improving the final presentation of the paper.

A The Relationship to the Sequent Calculus
In themain part of the paper we introduced the 𝜆𝜇�̃�-calculus without any references to the sequent
calculus, because we think it is not essential to understand the latter in order to understand the
former. In this appendix, we provide the details which help make the connection between the
logical calculus and the term system clear. We only discuss a very simple sequent calculus which
contains two logical connectives: the two conjunctions 𝐴 ⊗ 𝐵 and 𝐴 & 𝐵 which correspond to the
strict and lazy pairs that we have seen in Core. We use 𝑋 for propositional variables.

𝐴, 𝐵 F 𝑋 | 𝐴 ⊗ 𝐵 | 𝐴 & 𝐵

In the (classical) sequent calculus both the premisses and the conclusion of a derivation rule consist
of sequents Γ ⊢ Δ. Both Γ andΔ aremultisets of formulas; that is, it is important howoften a formula
occurs on the left or the right, but not in which order the formulas occur. In the sequent calculus,
we only have introduction rules. This means that the logically complex formula 𝐴 ⊗ 𝐵 or 𝐴 & 𝐵

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

https://github.com/grokking-sc/grokking-sc

Grokking the Sequent Calculus (Functional Pearl) 250:27

only occurs in the conclusion of the rules that define it, and not in one of the premises. Every
connective comes with a set of rules which introduce the connective on the left and the right of
the turnstile. In our case, the rules look like this:

Axiom
𝐴 ⊢ 𝐴

Γ1 ⊢ Δ1, 𝐴 𝐴, Γ2 ⊢ Δ2 Cut
Γ1, Γ2 ⊢ Δ1,Δ2

Γ, 𝐴1, 𝐴2 ⊢ Δ ⊗-L
Γ, 𝐴1 ⊗ 𝐴2 ⊢ Δ

Γ1 ⊢ 𝐴1,Δ1 Γ2 ⊢ 𝐴2,Δ2 ⊗-R
Γ1, Γ2 ⊢ 𝐴1 ⊗ 𝐴2,Δ1,Δ2

Γ, 𝐴1 ⊢ Δ
&-L1Γ, 𝐴1 &𝐴2 ⊢ Δ

Γ, 𝐴2 ⊢ Δ
&-L2Γ, 𝐴1 &𝐴2 ⊢ Δ

Γ ⊢ 𝐴1,Δ Γ ⊢ 𝐴2,Δ &-R2Γ ⊢ 𝐴1 &𝐴2,Δ

The rule Cut is the only rule which destroys the so-called subformula property. This property
says that every formula which occurs anywhere in a derivation is a subformula of a formula occur-
ring in the conclusion of the derivation. Proof theorists therefore try to show that we can eliminate
the cuts; if every sequent which can be derived using the Cut rule can also be derivedwithout using
it, we say that the calculus enjoys the cut-elimination property. The Curry-Howard correspondence
for the sequent calculus relates this cut-elimination procedure to the computations that we have
seen in the paper.

The first step from the sequent calculus towards the 𝜆𝜇�̃�-calculus consists in marking at most
one of the formulas in each of the sequents as active. Wemark a formula as active by enclosing it in
a pair of brackets. This yields two versions of the rule Axiom, one where we mark the formula on
the left and one where we mark the formula on the right. If we want to translate every derivation
using the original rules to a derivation in the new variant we also have to add special rules which
activate and deactivate formulas both on the left and on the right. This yields the following new
set of rules:

Axiom-L[𝐴] ⊢ 𝐴 Axiom-R
𝐴 ⊢ [𝐴]

Γ1 ⊢ Δ1, [𝐴] [𝐴], Γ2 ⊢ Δ2 Cut
Γ1, Γ2 ⊢ Δ1,Δ2

Γ, 𝐴1, 𝐴2 ⊢ Δ ⊗-L
Γ, [𝐴1 ⊗ 𝐴2] ⊢ Δ

Γ1 ⊢ [𝐴1],Δ1 Γ2 ⊢ [𝐴2],Δ2 ⊗-R
Γ1, Γ2 ⊢ [𝐴1 ⊗ 𝐴2],Δ1,Δ2

Γ, [𝐴1] ⊢ Δ
&-L1

Γ, [𝐴1 &𝐴2] ⊢ Δ

Γ, [𝐴2] ⊢ Δ
&-L2

Γ, [𝐴1 &𝐴2] ⊢ Δ

Γ ⊢ 𝐴1,Δ Γ ⊢ 𝐴2,Δ &-R2
Γ ⊢ [𝐴1 &𝐴2],Δ

Γ, 𝐴 ⊢ Δ Act-L
Γ, [𝐴] ⊢ Δ

Γ, [𝐴] ⊢ Δ
Deact-L

Γ, 𝐴 ⊢ Δ

Γ ⊢ 𝐴,Δ Act-R
Γ ⊢ [𝐴],Δ

Γ ⊢ [𝐴],Δ
Deact-R

Γ ⊢ 𝐴,Δ
We can now begin to assign terms to derivations in this calculus by associating every non-active

formula 𝐴 in the left side of the turnstile with a producer variable 𝑥 :prd 𝐴, and every non-active
formula 𝐵 on the right side of the turnstile with a consumer variable 𝛼 :cns 𝐵. As discussed in
Section 6.2 we write both producer and consumer variables in a joint context Γ on the left-hand
side of typing rules. We have to distinguish three different sequents, depending on whether a
formula is active, and if so, on which side the active formula occurs. If there is no active formula,
then we assign a statement to the sequent, if the formula on the right is active, we assign a producer,
and if the formula on the left is active, we assign a consumer. For most rules the correspondence
is clear: The rule Axiom-R corresponds to the typing rule VaR1 (and Axiom-L to VaR2). The rule

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:28 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Tup corresponds to the rule ⊗-R, and Case-PaiR to ⊗-L. The rules Fst and Snd correspond to the
rules &-L1 and &-L2, and Cocase-LPaiR to &-R. The activation rules correspond to the rules 𝜇 and
�̃�, and deactivation can be expressed as a cut with a variable.

B Typing Rules for Fun
Given a term 𝑡 , an environment Γ and a program 𝑃 , if 𝑡 has type 𝜏 in environment Γ and program 𝑃 ,
we write Γ ⊢𝑃 𝑡 : 𝜏 . As 𝑃 is only used for typing calls to top-level definitions (rule Call), we usually
leave it implicit in the typing rules. To make sure programs 𝑃 are well-formed, we have additional
checking rules for programs ∅-oK and P-OK. If a program is well-formed, we write ⊢ 𝑃 OK.

𝑥 :prd 𝜏 ∈ Γ VaR
Γ ⊢ 𝑥 : 𝜏

Lit
Γ ⊢ ⌜𝑛⌝ : Int

Γ ⊢ 𝑡1 : Int Γ ⊢ 𝑡2 : Int Op
Γ ⊢ 𝑡1 ⊙ 𝑡2 : Int

Γ ⊢ 𝑛 : Int Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏 Ifz
Γ ⊢ ifz(𝑛, 𝑡1, 𝑡2) : 𝜏

Γ ⊢ 𝑡1 : 𝜏1 Γ, 𝑥 :prd 𝜏1 ⊢ 𝑡2 : 𝜏2 Let
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝜏2

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :cns 𝜏 𝑗) : 𝜏 ∈ 𝑃 Γ ⊢ 𝑡𝑖 : 𝜏𝑖 𝛽 𝑗 :cns 𝜏 𝑗 ∈ Γ
Call

Γ ⊢𝑃 𝑓 (𝑡𝑖 ; 𝛽 𝑗) : 𝜏

Γ ⊢ 𝑡 : List(𝜏 ′) Γ ⊢ 𝑡1 : 𝜏 Γ, 𝑦 :prd 𝜏 ′, 𝑧 :prd List(𝜏 ′) ⊢ 𝑡2 : 𝜏 Case-List
Γ ⊢ case 𝑡 of {Nil ⇒ 𝑡1, Cons(𝑦, 𝑧) ⇒ 𝑡2} : 𝜏

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) : List(𝜏) Nil
Γ ⊢ Nil : List(𝜏)

Γ ⊢ 𝑡 : Pair(𝜏1, 𝜏2) Γ, 𝑥 :prd 𝜏1, 𝑦 :prd 𝜏2 ⊢ 𝑡 : 𝜏 Case-PaiR
Γ ⊢ case 𝑡 of {Tup(𝑥,𝑦) ⇒ 𝑡} : 𝜏

Γ ⊢ 𝑡1 : 𝜏1 Γ ⊢ 𝑡2 : 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) : Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑡 : Stream(𝜏)
Hd

Γ ⊢ 𝑡 .hd : 𝜏

Γ ⊢ 𝑡 : Stream(𝜏)
Tl

Γ ⊢ 𝑡 .tl : Stream(𝜏)

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : Stream(𝜏)
StReam

Γ ⊢ cocase {hd ⇒ 𝑡1, tl ⇒ 𝑡2} : Stream(𝜏)

Γ ⊢ 𝑡 : LPair(𝜏1, 𝜏2) fst
Γ ⊢ 𝑡 .fst : 𝜏1

Γ ⊢ 𝑡 : LPair(𝜏1, 𝜏2) snd
Γ ⊢ 𝑡 .snd : 𝜏2

Γ ⊢ 𝑡1 : 𝜏1 Γ ⊢ 𝑡2 : 𝜏2 LPaiR
Γ ⊢ cocase {fst ⇒ 𝑡1, snd ⇒ 𝑡2} : LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑡1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑡2 : 𝜏1 App
Γ ⊢ 𝑡1 𝑡2 : 𝜏2

Γ, 𝑥 :prd 𝜏1 ⊢ 𝑡 : 𝜏2 Lam
Γ ⊢ 𝜆𝑥 .𝑡 : 𝜏1 → 𝜏2

Γ ⊢ 𝑡 : 𝜏 𝛼 :cns 𝜏 ∈ Γ Goto
Γ ⊢ goto(𝑡 ;𝛼) : 𝜏 ′

Γ, 𝛼 :cns 𝜏 ⊢ 𝑡 : 𝜏 Label
Γ ⊢ label 𝛼 {𝑡} : 𝜏

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

Grokking the Sequent Calculus (Functional Pearl) 250:29

To check a program, we start with the empty program, which we know is well-formed (Wf-
Empty), and then add one definition at a time. A definition is then well-typed if there are types
𝜏𝑖 and 𝜏 𝑗 for its arguments such that its body is well-typed. Because we explicitly allow recursive
definitions, the body 𝑡 might contain the name f as well. Thus, while we typecheck 𝑡 , we add the
definition of f to the program and assume it is well-typed. After finding 𝜏𝑖 , 𝜏 𝑗 and 𝜏 , these are added
to the program as well, that is, well-formed programs contain type annotations while definitions
on their own do not. This way, these types can be used while checking types of calls (in rule Call).

Wf-Empty⊢ ∅ OK
⊢ 𝑃 OK 𝑥 :prd 𝜏𝑖 , 𝛼 :cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :𝜏𝑖 ,𝛼 𝑗 :cns𝜏 𝑗) :𝜏≔𝑡 𝑡 : 𝜏

Wf-Cons
⊢ 𝑃, def f(𝑥𝑖 : 𝜏𝑖 , 𝛼 𝑗 :cns 𝜏 𝑗) : 𝜏 ≔ 𝑡 OK

C Operational Semantics of label/goto
The full operational semantics for the label/goto construct is in essence the same as for let/cc.
To make it precise, we promote evaluation contexts to runtime values.

We first repeat Definition 3.1 of evaluation contexts with one change: label 𝛼 {𝐸} is not an
evaluation context. We reduce a label as soon as it comes into evaluation position.

𝐸 F □ | 𝐸 ⊙ 𝑡 | 𝔱 ⊙ 𝐸 | ifz(𝐸, 𝑡, 𝑡) | let 𝑥 = 𝐸 in 𝑡 | 𝑓 (𝔱, 𝐸, 𝑡) | 𝐾 (𝔱, 𝐸, 𝑡)
| case 𝐸 of {𝐾 (𝑥) ⇒ 𝑡} | 𝐸 𝑡 | 𝔱 𝐸 | 𝐸.𝐷 (𝑡) | 𝔱.𝐷 (𝔱, 𝐸, 𝑡) | goto(𝐸;𝛼)

Now we add them as another form of value
𝔱 F . . . | 𝐸

Note that these values only exist at runtime, that is, they cannot appear in expressions before
evaluation has started. They are typed as consumers, which means that they are the only values
with a consumer type. This makes sure that we can substitute them for covariables. Their typing
can be captured by the following rule.

𝑥 :prd 𝜏 ⊢ 𝐸 [𝑥] : 𝜏0 Ctx⊢ 𝐸 :cns 𝜏
The rule means that if the hole of a context 𝐸 expects an expression of type 𝜏 to be plugged in,
then we have 𝐸 :cns 𝜏 .

Now we can give the evaluation rules for label and goto:
𝐸 [label 𝛼 {𝑡}] ⊲ 𝐸 [𝑡 [𝐸/𝛼]] 𝐸′ [goto(𝔱;𝐸)] ⊲ 𝐸 [𝔱]

In the rule for label, the surrounding evaluation context 𝐸 is reified as a value and then substituted
for the covariable 𝛼 in the body 𝑡 . Note that 𝐸 is not removed, i.e., evaluation continues in this
context. In particular, if 𝛼 does not occur free in 𝑡 , then the label is effectively a no-op. We can
also see that the types are correct: If 𝑡 has type 𝜏 , then so does label 𝛼 {𝑡} and consequently we
have 𝐸 :cns 𝜏 which is the same type as that of 𝛼 . In the rule for goto the covariable must have
already been replaced by an evaluation context, which is ensured if the evaluated term was closed
and well-typed, because the only way to introduce a covariable is through a label. The evaluation
step then removes and discards the surrounding context 𝐸′ and continues evaluation by plugging
the value 𝔱 into the previously reified context 𝐸. Note that 𝐸′ cannot contain labels, as they are
not evaluation contexts. This ensures that there is no risk of removing a binder for a free variable
in 𝔱. Together these two rules also allow us to simulate the approximate rule from Section 3.1:

𝐸 [label 𝛼 {𝐸′ [goto(𝔱;𝛼)]}] ⊲ 𝐸 [𝐸′ [goto(𝔱;𝐸)]] ⊲ 𝐸 [𝔱]
The rule for goto also is the reasonwhy the theorem of strong preservation does not immediately

hold (see the discussion in Section 4.3). The problem is that from this rule and the given typing

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

250:30 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

rules for Fun it is not immediate that the evaluation contexts 𝐸′ and 𝐸 yield a term of the same
type when filling their holes, so that the overall type of the term may not be preserved. But this
cannot actually happen, because all other reduction rules preserve the overall type and hence all
evaluation contexts that are reified by the rule for labelmust yield a term of that same overall type
when their holes are filled. Therefore, also the rule for goto is type-preserving. This can be made
precise by explicitly tracking the overall type in the type system (see, e.g., Section 6 in [Wright
and Felleisen 1994]).

References
Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures

by Observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Rome, Italy) (POPL ’13). Association for Computing Machinery, New York, NY, USA, 27–38. https://doi.org/
10.1145/2480359.2429075

Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2
(1992), 297–347. Issue 3. https://doi.org/10.1093/logcom/2.3.297

David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann. 2024. Grokking the Sequent Calculus (Functional
Pearl). https://doi.org/10.5281/zenodo.12704905 Archived version of the submitted artefact.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (nov 2020), 30 pages. https:
//doi.org/10.1145/3428194

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications: Onward! Essays (Orlando). Association for Computing Machinery,
New York, NY, USA, 557–572. https://doi.org/10.1145/1640089.1640133

Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New York, NY,
USA, 233–243. https://doi.org/10.1145/357766.351262

Pierre-Louis Curien and Guillaume Munch-Maccagnoni. 2010. The Duality of Computation under Focus. In Theoretical
Computer Science, Cristian S. Calude and Vladimiro Sassone (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 165–
181.

Paul Downen and Zena M. Ariola. 2014. The Duality of Construction. In Proceedings of the 23rd European Symposium on
Programming Languages and Systems - Volume 8410 (ESOP ’14). Springer, Berlin, Heidelberg, 249–269. https://doi.org/
10.1007/978-3-642-54833-8_14

Paul Downen and ZenaM. Ariola. 2018a. Beyond Polarity: Towards aMulti-Discipline Intermediate Language with Sharing.
In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 119), Dan Ghica and Achim Jung (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 21:1–21:23. https://doi.org/10.4230/LIPIcs.CSL.2018.21

Paul Downen and Zena M. Ariola. 2018b. A tutorial on computational classical logic and the sequent calculus. Journal of
Functional Programming 28 (2018). https://doi.org/10.1017/S0956796818000023

Paul Downen and Zena M. Ariola. 2020. Compiling With Classical Connectives. Logical Methods in Computer Science
Volume 16, Issue 3 (Aug. 2020). https://doi.org/10.23638/LMCS-16(3:13)2020

Paul Downen, Philip Johnson-Freyd, and ZenaM. Ariola. 2015. Structures for structural recursion. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association
for Computing Machinery, New York, NY, USA, 127–139. https://doi.org/10.1145/2784731.2784762

Paul Downen, Luke Maurer, Zena M Ariola, and Simon Peyton Jones. 2016. Sequent calculus as a compiler intermediate
language. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. 74–88.

Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. 2019. Codata in Action. In European Symposium
on Programming (ESOP ’19). Springer, 119–146. https://doi.org/10.1007/978-3-030-17184-1_5

Matthias Felleisen. 1987. Reflections on Landin’s J-operator: A Partly Historical Note. Computer Languages 12, 3 (1987),
197–207. https://doi.org/10.1016/0096-0551(87)90022-1

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A syntactic theory of sequential control.
Theoretical Computer Science 52, 3 (1987), 205–237. https://doi.org/10.1016/0304-3975(87)90109-5

Andrzej Filinski. 1989. Declarative Continuations: an Investigation of Duality in Programming Language Semantics. In
Category Theory and Computer Science. Springer-Verlag, Berlin, Heidelberg, 224–249.

Gerhard Gentzen. 1935a. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 35 (1935), 176–210.
Gerhard Gentzen. 1935b. Untersuchungen über das logische Schließen. II. Mathematische Zeitschrift 39 (1935), 405–431.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.5281/zenodo.12704905
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/357766.351262
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.4230/LIPIcs.CSL.2018.21
https://doi.org/10.1017/S0956796818000023
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.1145/2784731.2784762
https://doi.org/10.1007/978-3-030-17184-1_5
https://doi.org/10.1016/0096-0551(87)90022-1
https://doi.org/10.1016/0304-3975(87)90109-5

Grokking the Sequent Calculus (Functional Pearl) 250:31

Gerhard Gentzen. 1969. The collected papers of Gerhard Gentzen. North-Holland Publishing Co., Amsterdam.
Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-

3975(87)90045-4
Brian Goetz et al. 2014. JSR 335: Lambda Expressions for the Java Programming Language. https://jcp.org/en/jsr/detail?id=

335
Timothy G. Griffin. 1989. A Formulae-as-Type Notion of Control. In Proceedings of the 17th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90). Association for Computing
Machinery, New York, NY, USA, 47–58. https://doi.org/10.1145/96709.96714

Tatsuya Hagino. 1989. Codatatypes in ML. Journal of Symbolic Computation 8, 6 (1989), 629–650. https://doi.org/10.1016/
S0747-7171(89)80065-3

Peter John Landin. 1965. Correspondence between ALGOL 60 and Church’s Lambda-notation: part I. Commun. ACM 8, 2
(feb 1965), 89–101. https://doi.org/10.1145/363744.363749

Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Proceedings of the 4th International Conference on
Typed Lambda Calculi and Applications (TLCA ’99). Springer-Verlag, Berlin, Heidelberg, 228–242.

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. 2017. Compiling without Continuations. In Proceed-
ings of the 38th ACMSIGPLANConference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 482–494. https://doi.org/10.1145/3062341.3062380

Étienne Miquey. 2019. A Classical Sequent Calculus with Dependent Types. ACM Trans. Program. Lang. Syst. 41, 2, Article
8 (mar 2019), 47 pages. https://doi.org/10.1145/3230625

Guillaume Munch-Maccagnoni. 2009. Focalisation and Classical Realisability. In Computer Science Logic: 23rd international
Workshop, CSL 2009, 18th Annual Conference of the EACSL (Coimbra, Portugal) (CSL ’09), Erich Grädel and Reinhard
Kahle (Eds.). Springer, Berlin, Heidelberg, 409–423. https://doi.org/10.1007/978-3-642-04027-6_30

Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition of Programs and Proofs. Ph. D.
Dissertation. Univ. Paris Diderot.

Sara Negri and Jan Von Plato. 2001. Structural Proof Theory. Cambridge University Press. https://doi.org/10.1017/
CBO9780511527340

Klaus Ostermann, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul Downen. 2022. Introduction and Elimination, Left
and Right. Proc. ACM Program. Lang. 6, ICFP, Article 106 (2022), 28 pages. https://doi.org/10.1145/3547637

Michel Parigot. 1992. 𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and
Automated Reasoning, Andrei Voronkov (Ed.). Springer, Berlin, Heidelberg, 190–201.

John Charles Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In ACMConf (Boston).
Association for Computing Machinery, New York, NY, USA, 717–740. https://doi.org/10.1145/800194.805852

Arnaud Spiwack. 2014. A Dissection of L. (2014). Unpublished draft.
Morten Heine Sørensen and Paweł Urzyczyn. 2006. Lectures on the Curry-Howard Isomorphism. Studies in Logic and the

Foundations of Mathematics, Vol. 149. Elsevier.
Hayo Thielecke. 1998. An Introduction to Landin‘s “A Generalization of Jumps and Labels”. Higher Order Symbol. Comput.

11, 2 (sep 1998), 117–123. https://doi.org/10.1023/A:1010060315625
Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic Proof Theory, Second Edition. Cambridge University Press.
Philip Wadler. 1990. Linear Types Can Change the World!. In Programming Concepts and Methods. North-Holland.
Philip Wadler. 2003. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM SIGPLAN International Con-

ference on Functional Programming (Uppsala, Sweden) (ICFP ’03). Association for Computing Machinery, New York, NY,
USA, 189–201. https://doi.org/10.1145/944705.944723

Philip Wadler. 2005. Call-by-Value Is Dual to Call-by-Name - Reloaded. In Term Rewriting and Applications, 16th Interna-
tional Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3467),
Jürgen Giesl (Ed.). Springer, 185–203. https://doi.org/10.1007/978-3-540-32033-3_15

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation
115, 1 (11 1994), 38–94. https://doi.org/10.1006/inco.1994.1093

Noam Zeilberger. 2008. On the Unity of Duality. Annals of Pure and Applied Logic 153, 1-3 (2008), 66–96. https://doi.org/
10.1016/j.apal.2008.01.001

Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph. D. Dissertation. Carnegie Mellon
University, USA. Advisor(s) Pfenning, Frank and Lee, Peter.

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. 2016. Accepting Blame for
Safe Tunneled Exceptions. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 281–
295. https://doi.org/10.1145/2908080.2908086

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://jcp.org/en/jsr/detail?id=335
https://jcp.org/en/jsr/detail?id=335
https://doi.org/10.1145/96709.96714
https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/10.1145/363744.363749
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3230625
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.1145/3547637
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010060315625
https://doi.org/10.1145/944705.944723
https://doi.org/10.1007/978-3-540-32033-3_15
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1016/j.apal.2008.01.001
https://doi.org/10.1016/j.apal.2008.01.001
https://doi.org/10.1145/2908080.2908086

	Abstract
	1 Introduction
	2 Translating to Sequent Calculus
	2.1 Arithmetic Expressions
	2.2 Let Bindings
	2.3 Top-Level Definitions
	2.4 Algebraic Data and Codata Types
	2.5 First-Class Functions
	2.6 Control Operators

	3 Evaluation Within a Context
	3.1 Evaluation Contexts for Fun
	3.2 Focusing on Evaluation in Core

	4 Typing Rules
	4.1 Typing Rules for Fun
	4.2 Typing Rules for Core
	4.3 Type Soundness

	5 Insights
	5.1 Evaluation Contexts are First Class
	5.2 Data is Dual to Codata
	5.3 Let-Bindings are Dual to Control Operators
	5.4 The Case-of-Case Transformation
	5.5 Direct and Indirect Consumers
	5.6 Call-by-Value, Call-by-Name and Eta-Laws
	5.7 Linear Logic and the Duality of Exceptions

	6 Related Work
	6.1 The Sequent Calculus
	6.2 Term Assignment for the Sequent Calculus
	6.3 Codata Types
	6.4 Control Operators and Classical Logic
	6.5 Different Evaluation Orders

	7 Conclusion
	A The Relationship to the Sequent Calculus
	B Typing Rules for Fun
	C Operational Semantics of label/goto
	References

