In order to be admitted to the exam, you have to successfully submit your homework every week, except for 2 weeks. A successful submission is one where you get at least 1 point.

Handin Please submit this homework until Thursday, January 17, either via email to Philipp Schuster (philipp.schuster@uni-tuebingen.de) before 12:00, or on paper at the beginning of the lab.

Groups You can work in groups of up to 2 people. Please include the names and Matrikelnummern of all group members in your submission.

Points For each of the Tasks you get between 0 and 2 points for a total of 6 points. You get:
- 1 point, if your submission shows that you tried to solve the task.
- 2 points, if your submission is mostly correct.

Task 1: Type Reconstruction

Find suitable types for the question marks in the following program:

\[\lambda x : T_1. \lambda f : T_2. \text{if(iszero } x \text{) then } x \text{ else } f \ x \]

Task 2: Weakest Unifier

Consider the following grammar of types with unification variables \(T_i \):

\[
\text{type} ::= \text{Num} \mid (\text{type}) \to (\text{type}) \mid T_i
\]

Find the weakest (most general) unifier (if it exists) of the following pairs of types with unification variables:

1. \(\text{Num} \to T_1 \) and \(T_2 \to \text{Num} \)
2. \(\text{Num} \) and \(T_1 \to T_1 \)
3. \(T_1 \) and \(T_2 \)
Task 3: Implement Type Reconstruction

Implement the type reconstruction algorithm from the lecture for lambda calculus extended with numbers and addition but not recursion in a programming language of your choice. Do not try to write a parser but assume a representation of terms in memory. Examples for a representation of terms and types in Scala are on the website.