Programming Languages 2

Homework 3 – WS 18

Tübingen, 8. November 2018

In order to be admitted to the exam, you have to successfully submit your homework every week, except for 2 weeks. A successful submission is one where you get at least 1 point.

Handin Please submit this homework until Thursday, November 15, either via email to Philipp Schuster (philipp.schuster@uni-tuebingen.de) before 12:00, or on paper at the beginning of the lab.

Groups You can work in groups of up to 2 people. Please include the names and Matrikelnummern of all group members in your submission.

Points For each of the Tasks you get between 0 and 2 points for a total of 6 points. You get:
1 point, if your submission shows that you tried to solve the task.
2 points, if your submission is mostly correct.

Task 1: Evaluation

Reduce the following terms until they reach a normal form. Use the reduction relation from the lecture.

1. \((\lambda a. \lambda b. a) \; (\lambda x. \; x)\)
2. \((\lambda a. \lambda b. a \; b) \; (\lambda x. \; \lambda y. \; x \; y) \; (\lambda z. \; z)\)
3. \((\lambda z. \; z \; z) \; (\lambda f. \; f \; (\lambda a. \; a))\)

You do not have to draw a derivation tree for the reduction relation, but you do have to write down all reduction steps. So for example for the term \((\lambda f. \; f \; (\lambda x. \; x)) \; (\lambda x. \; x)\) you would write down the following:

\((\lambda f. \; f \; (\lambda x. \; x)) \; (\lambda x. \; x) \rightarrow (\lambda x. \; x) \; (\lambda x. \; x) \rightarrow (\lambda x. \; x)\)
Task 2: Church encoding

We are going to encode lists in lambda calculus as folds, similarly to how in the lecture we encoded natural numbers as folds. The basic list functions look like this:

- \(\text{nil} = \lambda f. \lambda z. \, z \)
- \(\text{singleton} = \lambda x. \lambda f. \lambda z. \, f \, x \, z \)
- \(\text{cons} = \lambda h. \lambda t. \lambda f. \lambda z. \, f \, h \, (t \, f \, z) \)
- \(\text{fold} = \lambda f. \lambda z. \lambda l. \, l \, f \, z \)

Using this encoding, the list with elements \(c_1, c_2, c_3 \) would for example look like this:

\[
\text{onetwothree} = \lambda f. \lambda z. \, f \, (c_1 \, (f \, c_2 \, (f \, c_3 \, z)))
\]

Write the following functions, operating on this encoding of lists:

1. sum
2. map
3. length

You can use the macros that were defined in the lecture, especially helpful are \(\text{plus}, \, c_0, \, c_1, \, c_2, \ldots \)

Task 3: Monotonicity

Let the reduction relation \(\rightarrow \) and the function \(\text{size} \) for terms in untyped lambda calculus be defined as in the lecture. Prove or disprove: if \(t \rightarrow t' \), then \(\text{size}(t) > \text{size}(t') \).