Functional Programming Patterns

Prof. Dr.-Ing. Klaus Ostermann

Slides are in part adapted from a talk by Scott Wlaschin
OO design vs FP design 😊

<table>
<thead>
<tr>
<th>OO pattern/principle</th>
<th>FP equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Single Responsibility Principle</td>
<td>• Functions</td>
</tr>
<tr>
<td>• Open/Closed principle</td>
<td>• Functions</td>
</tr>
<tr>
<td>• Dependency Inversion Principle</td>
<td>• Functions, also</td>
</tr>
<tr>
<td>• Interface Segregation Principle</td>
<td>• Functions</td>
</tr>
<tr>
<td>• Factory pattern</td>
<td>• You will be assimilated!</td>
</tr>
<tr>
<td>• Strategy pattern</td>
<td>• Functions again</td>
</tr>
<tr>
<td>• Decorator pattern</td>
<td>• Functions</td>
</tr>
<tr>
<td>• Visitor pattern</td>
<td>• Resistance is futile!</td>
</tr>
</tbody>
</table>
Functional Design

- Core Principles
 - Functions
 - Types
 - Composition
- Functions as Values
- Monads
- Maps
- Monoids and folds
Functions are Values!
Functions are “stand alone” and not associated to a class

They are “first class”: They are values, just like numbers or strings, and can hence be passed to or returned from other functions.
Functions are values!

A small Haskell session...

```haskell
> let x = 1
> let add1 y = y+1
> let add1 = \y -> y+1
> let twice f x = f (f x)
> twice add1 x
3
```

- Same keyword to bind names for all values, including functions
- Lambda notation
- Higher-Order functions
Composition everywhere!
Composition everywhere!

Function composition operator (is itself a function)

Can't tell it was built from smaller functions!
"Functions in the small, objects in the large"?

No. Due to composability, functions can be used on every abstraction level!

Low-level operation

Service

Use-case

Web application

AddressValidator

Http Request

Http Response
Types are not classes
What are types?

- Types are “sets” of values
 - (we use quotes around “set” because it may not strictly be a set as defined in set theory)
- If an expression e has type T, then this is a prediction that evaluation of e yields a value that is a member of the “set” T.
- Function types denote mathematical functions (recall that a mathematical function is also a set, namely a relation that is deterministic, ...)

- In FP, a type describes the structure of the set it denotes
- In most OO languages, a type is a class name
Nominal vs Structural typing

- In FP, a type describes the structure of the set it denotes
 - Two types are equivalent if they have the same structure
 - This is called “structural typing”

- In most OO languages, a type is a class name
 - Two types are equivalent if they are identical
 - This is called “nominal typing”

- Example: The types A and B are different in Java (a nominal system)
  ```java
  class A { int x; int y }
  class B { int x; int y }
  ```

- Example: The types A and B are equivalent in Haskell (a structural system)
  ```haskell
  type A = (Int,Int)
  type B = (Int,Int)
  ```
Composition of Types

- Types can be composed, too
- Standard type composition operators: Products and Sums
- Sum types correspond to disjoint unions
- Product types correspond to Cartesian products

- Examples for sum types:
 - **Either** type in Scala or Haskell
 - E.g., type `Bool = Either Unit Unit`
 - type `Maybe a = Either a Unit`
- Sum types destructed via pattern matching

- Some languages also feature non-disjoint unions
 - Union types in C
 - Not type-safe
Examples for Product types

- Tuples: (1,"hi") has type (Int,String)
- Records: (x = 5, y = 7) has type (x: Int, y: Int)
Products and Sums together:
Algebraic data types

- E.g. in Haskell:

```haskell
data Color = Red | Green | Blue

data Point = Point Float Float

data UniversityPerson = Professor String | Student Int String
```
Data of unbounded size via recursion

- With products and sums, we can only construct data types of fixed size
- To have things like lists, we need some form of recursion

- One way: Fixed point operator on the type level

```
data IntListF x = EmptyList | Cons Int x
```

```
type IntList = Fix IntListF
```

- More common way: Nominal types with recursion
- Algebraic data types allow recursion!

```
data IntList = EmptyList | Cons Int IntList
```
Algebraic data types vs. OO classes

- In OO languages, product types are formed by fields of classes
- Sum types are expressed via subtyping

Example:
```
data IntList = EmptyList | Cons Int IntList
```

can be expressed as

```
abstract class IntList

case class EmptyList() extends IntList
case class Cons(x: Int, rest: IntList) extends IntList
```

Important difference: Sum types in FP are usually closed, i.e., non-extensible, whereas sums expressed via subtyping are open

This is related to the “expression problem” we discussed earlier
Datatype-Generic Programming

- Observation: Many standard functions can in principle be derived from the shape of an algebraic data type
 - Equality of two types, various traversals, “folds”
 - But we need to repeat those definitions for every datatype

- Way out: Datatype-generic programming
- We can’t address the topic in detail, see www.cs.ox.ac.uk/jeremy.gibbons/publications/dgp.pdf for a good tutorial

- Common idea: Express datatypes via “polynomial functors”
 - Functor: Function on the type level that comes with a “map” function
 - Polynomial functor: Type constructors that can show up in the functor restricted to product and sum operators

- E.g., instead of writing
data ListF x = EmptyList | Cons Int x
we can write
type ListF X = 1 + (Int * X)
(1 is something like Unit, 0 is something like Nothing)
Using polynomial functors, standard data type isomorphisms coincide with standard identities known from basic algebra:

1 * 1 = 1
1 + 0 = 0 + 1 = 1
1 * 0 = 0
A * B = B * A
A * (B + C) = A * B + A * C
1 + 1 = 2

Even standard rules for derivation of polynomials can be interpreted in the polynomial functor world

F(X) = X * X * X = X^3
F’(X) = 3 * X * X = 3 * X^2 = (X^2 + X^2 + X^2)
F(X) describes containers with three elements.
F’(X) describes the types of containers with three elements with a “hole”: Either the left element is missing, or the middle one, or the right one
For more on this topic, consider http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
FP pattern: Make effects explicit

- “Effect”: Things a function does in addition to (or instead of) computing a value
 - Example: Non-termination, I/O, Mutation of variables
- Idea: Type signatures should not “lie”
 - If a function signature promises to map every string to an integer, it should not sometimes return abnormally with an exception

- Example: In FP, an integer parsing function string2int would have a type like:
 string2int : String -> Maybe Int

 instead of

 string2int: String -> Int

 and sometimes throwing an exception
What’s good about explicit effects?

- Making effects explicit reduces or eliminates the dependence of the program result on the order of evaluation

Example:

```scala
val myfunc = try {
    fun (x: String) => if ... then throw SomeException ...
} catch (SomeException e) ...
```

The exception handler won’t work if the exception is thrown in a part of the code whose evaluation is deferred, e.g., by being inside a function body
Explicit effects

- Explicit effects are only a “design pattern” in some FP languages; in other languages they are (partially) enforced by the type system
 - Haskell, Clean, Idris, ...
 - For instance, Haskell enforces explicit mutation and I/O, but does not enforce termination

- For instance, a Haskell function of type \(\text{Int} \to \text{Int} \) will, given input \(x \)
 - Either diverge on \(x \)
 - Or return another integer \(y \) but not perform any mutation, not print something on the screen, not write something to your harddrive, not communicate on the network

- There are several advanced FP “patterns” for dealing with explicit effects in an elegant way
 - Monads, effect types, algebraic effects, ...
 - Not in the scope of this lecture
Back to basic FP...

- Meta-Pattern in FP: “We can parameterize/abstract over anything”

- Concrete instance of the meta-pattern: Parameterize over functions
- Example: FP programmers hate this kind of redundancy

```java
public static int Product(int n) {
    int product = 1;
    for (int i = 1; i <= n; i++) {
        product *= i;
    }
    return product;
}

public static int Sum(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;
}
```
Parameterize all things...

```java
public static int Product(int n)
{
    int product = 1;
    for (int i = 1; i <= n; i++)
    {
        product *= i;
    }
    return product;
}

public static int Sum(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++)
    {
        sum += i;
    }
    return sum;
}
```
Parameterize all the things

```
let product n =
    let initialValue = 1
    let action productSoFar x = productSoFar * x
    [1..n] |> List.fold action initialValue

let sum n =
    let initialValue = 0
    let action sumSoFar x = sumSoFar + x
    [1..n] |> List.fold action initialValue
```

Lots of collection functions like this: "fold", "map", "reduce", "collect", etc.