
Introduction	to	Software	Technology	
Software	Quality	

Klaus	Ostermann	
	

Some	slides	on	refactoring	adapted	from	CS246	course	at	U	Waterloo	
	

Einführung	in	die	Softwaretechnik	1	

Software	Quality	

Einführung	in	die	Softwaretechnik	2	

}  How	can	we	maintain	or	improve	the	quality	of	software?	

}  What	is	software	quality,	anyway?	
}  Correct	implementation	of	requirements	specification	
}  Design	quality,	modularity	

}  Extensibility,	Maintainability,	Understandability,	Readability,	
Reusability	…	

}  Robustness	to	change	
}  Low	Coupling,	High	Cohesion	

}  Reliability,	Fault	Tolerance,	Testability,	Performance,	…	

Software	Quality	

Einführung	in	die	Softwaretechnik	3	

}  How	can	we	measure	software	quality?	

}  What	about	software	metrics?	What	is	a	software	metric?	

“You	can’t	control	what	you	can't	measure”	
Tom	DeMarco,	1986	

Measurement	is	the	empirical,	objective	assignment	of	
numbers,	according	to	a	rule	derived	from	a	model	or	

theory,	to	attributes	of	objects	or	events	with	the	intent	of	
describing	them.	

	
Kaner	&	Cem,	“Software	Engineer	Metrics:	What	do	they	measure	and	how	do	we	know?”	

Examples	of	Software	Metrics	

Einführung	in	die	Softwaretechnik	4	

}  Lines	of	Code	(LoC)	
}  Bugs	per	line	of	code	
}  Comment	density	
}  Cyclomatic	complexity	

}  measures	the	number	of	linearly	independent	paths	through	a	
program's	source	code	

}  Halstead	complexity	measures	
}  Derive	software	complexity	from	numbers	of	(distinct)	operands	and	

operators	
}  Program	execution	time	
}  Test	Coverage		
}  Number	of	classes	and	interfaces	
}  Abstractness	=	ratio	of	abstract	classes	to	total	number	of	classes	
}  …	

Metrics	are	rarely	used	

Einführung	in	die	Softwaretechnik	5	

}  Few	companies	establish	measurement	programs,	even	fewer	
succeed	with	them	

}  Those	that	use	metrics	often	do	so	only	to	conform	to	criteria	
established	in	certain	quality	standards	such	as	CMM	
}  see	N.	E.	Fenton,	"Software	Metrics:	Successes,	Failures	&	New	

Directions”,	1999	

}  One	could	interpret	this	as	evidence	of	the	immaturity	and	
unprofessionalism	of	the	field	
}  Aren’t	the	engineers	so	successful	because	they	can	measure	

quality?	
}  But	this	is	again	the	misleading	“software	as	engineering	product”	

analogy	that	was	already	refuted	in	the	first	lecture	of	this	course	

Metrics	are	rarely	used	useful!	

Einführung	in	die	Softwaretechnik	6	

}  Formally	defined	metrics	are	objective,	but	what	do	these	
measurements	mean?	
}  What	can	we	conclude	about	quality	if	the	cyclomatic	
complexity	of	our	code	is	12?	

}  Answer:	Nothing.	

}  Problem:	Often	unclear	whether	the	metric	correlates	to	
any	useful	quality	factor	
}  Similar	to	the	attempt	of	measuring	the	intelligence	of	a	
person	in	terms	of	the	weight	or	circumference	of	the	brain	

}  If	a	future	potential	employer	tells	you	about	their	
extensive	software	metrics	suite,	run!	J		

Tom	DeMarco	23	years	later…	

Einführung	in	die	Softwaretechnik	7	

“The	book’s	most	quoted	line	is	its	first		sentence:	“You	can’t	
control	what	you	can’t	measure.”	This	line	contains	a	real	
truth,	but	I’ve	become	increasingly	uncomfortable	with	my	
use	of	it.	Implicit	in	the	quote	is	that	control	is	an	important	
aspect,	maybe	the	most	important,	of	any	software	project.	
But	it	isn’t.	Many	projects	have	proceeded	without	much	
control	but	managed	to	produce	wonderful	products.”	
	
Tom	DeMarco,	“Software	Engineering:	An	Idea	Whose	Time	
Has	Come	and	Gone”,	2009.	

Software	Quality	

Einführung	in	die	Softwaretechnik	8	

}  If	metrics	don’t	work,	how	do	we	assess	the	quality	of	
software?	

}  Answer:	By	a	case-by-case	analysis	of	each	individual	
software	project	
}  Reason	about	design	quality,	extensibility,	…	
}  Reason	by	comparing	to	designs	that	have	proven	useful	

}  Design	patterns	etc.	

}  Reason	by	looking	for	“code	smells”	and	anti-patterns	
}  By	extensive	test	suites	
}  By	using	analysis	tools:	Static	analysis,	dynamic	analysis,	formal	
verification	

Code	Smells	

Einführung	in	die	Softwaretechnik	9	

}  Code	smell:	Any	symptom	in	the	code	of	a	program	that	
possibly	indicates	a	deeper	problem		
}  Term	popularized	by	Kent	Beck	in	his	“Refactoring”	book	

}  Common	code	smells	
}  Duplicated	code	
}  Long	method,	Large	class	
}  Feature	envy,	inappropriate	intimacy	
}  Contrived	complexity	

Anti-Pattern	

Einführung	in	die	Softwaretechnik	10	

}  An	anti-pattern	is	a	pattern	that	may	be	commonly	used	
but	is	ineffective	and/or	counterproductive	in	practice.	

}  A	description	of	anti-patterns	is	useful	
}  One	can	recognize	the	forces	that	lead	to	their	repetition	and	
learn	how	others	have	refactored	themselves	out	of	these	
broken	patterns.	

}  Examples:	
}  Action	at	a	distance:	Unexpected	interaction	between	
otherwise	separated	parts	of	a	system	

}  Sequential	coupling:	A	class	that	requires	its	methods	to	be	
called	in	a	particular	order	

}  Circular	dependency:	Unnecessary	direct	or	indirect	mutual	
dependencies	between	software	modules	

Anti-Pattern	

Einführung	in	die	Softwaretechnik	11	

}  More	Examples:	
}  Abstraction	Inversion:	Re-implement	low-level	functions	using	
high-level	functions	

}  Interface	bloat:	Making	an	interface	so	powerful	that	it	is	too	
hard	to	implement	

}  Busy	spin	or	busy	waiting:	Consuming	CPU	while	waiting	for	
something	to	happen	

}  See	http://c2.com/cgi/wiki?AntiPatternsCatalog	for	an	
extensive	overview	over	common	antipatterns		

What	to	do	about	anti-patterns	and	code	smells?	

Einführung	in	die	Softwaretechnik	12	

}  Refactorings	formalize	the	idea	to	systematically	remove	anti-
patterns	and	code	smells	
}  Often	formalized	to	a	degree	that	it	can	be	automated	in	the	form	of	

an	IDE	tool	
}  Standard	reference:													à		
}  Refactorings	can	often	be		
understood	to	improve	the	
modularity	of	the	code		

}  Refactorings	do	not	change	the	
behavior	of	code,	e.g.,	add	a	feature	

}  Let’s	look	at	some	smells	and		
associated	refactorings	in	more		
detail!	

Bad	smells	and	associated	refactorings	

Einführung	in	die	Softwaretechnik	13	

}  Duplicated	code	–	“The	#1	bad	smell”	
}  We	have	already	discussed	how	to	abstract	over	different	
forms	of	duplicated	code	in	the	lecture	on	reuse	

}  Same	expression	in	two	methods	in	the	same	class?	
}  Make	it	a	private	auxiliary	routine	and	parameterize	it		

(Extract method refactoring)	

}  Same	code	in	two	related	classes?	
}  Push	commonalities	into	closest	mutual	ancestor	and	parameterize	
}  Use	template	method	DP	for	variation	in	subtasks	

(Form template method refactoring)

Bad	smells	and	associated	refactorings	

14	

} Duplicated	code	
}  Same	code	in	two	unrelated	classes?	

}  Ought	they	be	related?	
¨  Introduce	abstract	parent	(Extract class, Pull up method)

}  Does	the	code	really	belong	to	just	one	class?	
¨ Make	the	other	class	into	a	client	(Extract method)	

}  Can	you	separate	out	the	commonalities	into	a	subpart	or	
other	function	object?		
¨ Make	the	method	into	a	subobject	of	both	classes.	
¨  Strategy	DP	allows	for	polymorphic	variation	of	methods-as-
objects	

(Replace method with method object) = apply strategy pattern

Extract	Class	Refactoring

Einführung	in	die	Softwaretechnik	15	

You have one class doing work that should be done by two.
Create a new class and move the relevant fields and methods from the

old class into the new class.

Pull-Up	Method	Refactoring

Einführung	in	die	Softwaretechnik	16	

You have methods with identical results on subclasses.
Move them to the superclass

Extract	Method Refactoring

Einführung	in	die	Softwaretechnik	17	

void printOwing() {
 printBanner();
 //print details
 System.out.println ("name: " + _name);
 System.out.println ("amount " + getOutstanding());
}

void printOwing() {
 printBanner();
 printDetails(getOutstanding());
}
void printDetails (double outstanding) {
 System.out.println ("name: " + _name);
 System.out.println ("amount " + outstanding);
}

You have a code fragment that can be grouped together.
Turn the fragment into a method whose name explains the purpose of the method.

18	

Bad	smells	in	code	

}  Long method
}  Often	a	sign	of:	

}  Trying	to	do	too	many	things	
}  Poorly	thought	out	abstractions	and	boundaries	

}  Best	to	think	carefully	about	the	major	tasks	and	how	they	
inter-relate.		Be	aggressive!	
}  Break	up	into	smaller	private	methods	within	the	class	

(Extract method)
}  Delegate	subtasks	to	subobjects	that	“know	best”	(i.e.,	template	
method	DP)	
(Extract class/method, Replace data value with object)	

Replace	Data	Value	with	Object	Refactoring

Einführung	in	die	Softwaretechnik	19	

You have a data item that needs additional data or behavior.
Turn the data item into an object.

20	

Bad	smells	in	code	

}  Long method
}  Fowler’s	heuristic:	

} When	you	see	a	comment,	make	a	method.	
}  Often,	a	comment	indicates:	

¨  The	next	major	step	
¨  Something	non-obvious	whose	details	detract	from	the	clarity	of	
the	routine	as	a	whole.	

}  In	either	case,	this	is	a	good	spot	to	“break	it	up”.	

21	

Bad	smells	in	code	
}  Large class

}  i.e.,	too	many	different	subparts	and	methods	
}  Two	step	solution:	

1.  Gather	up	the	little	pieces	into	aggregate	subparts.	
(Extract class, replace data value with object)

2.  Delegate	methods	to	the	new	subparts.	
(Extract method)

}  Likely,	you’ll	notice	some	unnecessary	subparts	that	
have	been	hiding	in	the	forest!	

}  Resist	the	urge	to	micromanage	the	subparts!	

22	

Bad	smells	in	code	

}  Large class
}  Counter	example:	

}  Library	classes	often	have	large,	fat	interfaces	(many	
methods,	many	parameters,	lots	of	overloading)	
¨  If	the	many	methods	exist	for	the	purpose	of	flexibility,	that’s	

OK	in	a	library	class.	

23	

Bad	smells	in	code	

}  Long parameter list
}  Long	parameter	lists	make	methods	difficult	for	

clients	to	understand	
}  This	is	often	a	symptom	of	

}  Trying	to	do	too	much	
}  …	too	far	from	home	
}  …	with	too	many	disparate	subparts	

"if	your	procedure	has	more	than	about	half	a	dozen	
parameters,	you	probably	forgot	a	few.“	–	Alan	Perlis	

24	

Bad	smells	in	code	

}  Long parameter list
}  In	the	old	days,	structured	programming	taught	

the	use	of	parameterization	as	a	cure	for	global	
variables.	
}  With	modules/OOP,	objects	have	mini-islands	of	

state	that	can	be	reasonably	treated	as	“global”	to	
the	methods	(yet	are	still	hidden	from	the	rest	of	the	
program).	
	

}  i.e.,	You	don’t	need	to	pass	a	subpart	of	yourself	as	a	
parameter	to	one	of	your	own	methods.	

25	

Bad	smells	in	code	
}  Long parameter list

}  Solution:	
}  Trying	to	do	too	much?	

¨  Break	up	into	sub-tasks	
(Extract method)

}  …	too	far	from	home?	
¨  Localize	passing	of	parameters;	don’t	just	pass	down	several	layers	

of	calls	
	(Preserve whole object, introduce parameter object)

}  …	with	too	many	disparate	subparts?	
¨  Gather	up	parameters	into	aggregate	subparts	
¨  Your	method	interfaces	will	be	much	easier	to	understand!	

(Preserve whole object, introduce parameter object)

Preserve	Whole	Object	Refactoring

Einführung	in	die	Softwaretechnik	26	

int low = daysTempRange().getLow();
int high = daysTempRange().getHigh();
withinPlan = plan.withinRange(low, high);

withinPlan = plan.withinRange(daysTempRange());

You are getting several values from an object and passing
these values as parameters in a method call.

Send the whole object instead.

Introduce	Parameter	Object	Refactoring

Einführung	in	die	Softwaretechnik	27	

You have a group of parameters that naturally go together.
Replace them with an object.

28	

Bad	smells	in	code	

}  Divergent change
}  Occurs	when	one	class	is	commonly	changed	in	different	ways	for	

different	reasons	
}  Likely,	this	class	is	trying	to	do	too	much	and	contains	too	many	

unrelated	subparts	
}  Over	time,	some	classes	develop	a	“God	complex”	

}  They	acquires	details/ownership	of	subparts	that	rightly	belong	
elsewhere	

}  This	is	a	sign	of	poor	cohesion	
}  Unrelated	elements	in	the	same	container	

}  Solution:	
}  Break	it	up,	reshuffle,	reconsider	relationships	and	responsibilities	

(Extract class)

29	

Bad	smells	in	code	
}  Shotgun surgery

}  …	the	opposite	of	divergent	change	
}  Each	time	you	want	to	make	a	single,	seemingly	coherent	

change,	you	have	to	change	lots	of	classes	in	little	ways	

}  Also	a	classic	sign	of	poor	cohesion	
}  Related	elements	are	not	in	the	same	container!	

}  Solution:	
}  Look	to	do	some	gathering,	either	in	a	new	or	existing	class.	

(Move method/field)

Move	Method	Refactoring

Einführung	in	die	Softwaretechnik	30	

A method is, or will be, using or used by more features of another class than
the class on which it is defined.

Create a new method with a similar body in the class it uses most.
 Either turn the old method into a simple delegation, or remove it altogether

Move	Field	Refactoring

Einführung	in	die	Softwaretechnik	31	

A field is, or will be, used by another class more than the class on which it is defined.
Create a new field in the target class, and change all its users.

32	

Bad	smells	in	code	
}  Feature envy

}  A	method	seems	more	interested	in	another	class	than	the	one	it’s	
defined	in	
e.g.,	a	method	A.m()	calls	lots	of	get/set	methods	of	class	B

}  Solution:	
}  Move	m()	(or	part	of	it)	into	B!	

(Move method/field, extract method)
}  Exceptions:	

}  Visitor/iterator/strategy	DP	where	the	whole	point	is	to	decouple	the	
data	from	the	algorithm	
¨  Feature	envy	is	more	of	an	issue	when	both	A	and	B	have	interesting	data		

33	

Bad	smells	in	code	
}  Data clumps

}  You	see	a	set	of	variables	that	seem	to	“hang	out”	together	
e.g.,	passed	as	parameters,	changed/accessed	at	the	same	time	

}  Usually,	this	means	that	there’s	a	coherent	subobject	just	waiting	to	
be	recognized	and	encapsulated	

void Scene::setTitle (string titleText,
 int titleX, int titleY,
 Colour titleColour){…}

void Scene::getTitle (string& titleText,

 int& titleX, int& titleY,
 Colour& titleColour){…}

34	

Bad	smells	in	code	
}  Data clumps

}  In	the	example,	a	Title	class	is	waiting	to	be	born	
}  If	a	client	knows	how	to	change	a	title’s	x,	y,	text,	and	colour,	

then	it	knows	enough	to	be	able	to	“roll	its	own”	Title	objects.	
}  However,	this	does	mean	that	the	client	now	has	to	talk	to	another	

class.	

}  This	will	greatly	shorten	and	simplify	your	parameter	lists	(which	
aids	understanding)	and	makes	your	class	conceptually	simpler	too.	

}  Moving	the	data	may	create	feature envy	initially	
}  May	have	to	iterate	on	the	design	until	it	feels	right.	
(Preserve whole object, extract class, introduce parameter

object)

35	

Bad	smells	in	code	
}  Primitive obsession

}  All	subparts	of	an	object	are	instances	of	primitive	types	
(int, string, bool, double, etc.)	
e.g.,	dates,	currency,	SIN,	tel.#,	ISBN,	special	string	values	

}  Often,	these	small	objects	have	interesting	and	non-
trivial	constraints	that	can	be	modelled	
e.g.,	fixed	number	of	digits/chars,	check	digits,	special	values	

}  Solution:	
}  Create	some	“small	classes”	that	can	encapsulate	coherent	

subsets	of	the	primitive	data	and	validate	and	enforce	the	
constraints.	

(Replace data value with object, extract class, introduce
parameter object)

36	

Bad	smells	in	code	
}  Switch statements

}  We	saw	this	before;	here’s	Fowler’s	example:	

Double getSpeed () {
 switch (_type) {

 case EUROPEAN:
 return getBaseSpeed();
 case AFRICAN:
 return getBaseSpeed() –
 getLoadFactor() * _numCoconuts;
 case NORWEGIAN_BLUE:
 return (_isNailed) ? 0
 : getBaseSpeed(_voltage);

 }
}

37	

Bad	smells	in	code	
}  Switch statements

}  This	is	an	example	of	a	lack	of	understanding	polymorphism	and	a	
lack	of	encapsulation.	

}  Solution:	
}  Redesign	as	a	polymorphic	method	of	PythonBird
(Replace conditional with polymorphism, replace type code with

subclasses)

Replace conditional with polymorphism,
replace type code with subclasses	

Einführung	in	die	Softwaretechnik	38	

Replace conditional with polymorphism	

replace type code with subclasses	

39	

Bad	smells	in	code	
}  Lazy class

}  Classes	that	doesn’t	do	much	that’s	different	from	other	classes.	
}  If	there	are	several	sibling	classes	that	don’t	exhibit	polymorphic	

behavioural	differences	,	then	consider	just	collapsing	them	back	
into	the	parent	and	add	some	parameters	

}  Often,	lazy classes	are	legacies	of	ambitious	design	or	a	refactoring	
that	gutted	the	class	of	interesting	behaviour	

(Collapse hierarchy, inline class)

Collapse hierarchy, inline class	

Einführung	in	die	Softwaretechnik	40	

A class isn't doing very much.
Move all its features into another class and delete it.

A superclass and subclass are not very different.
Merge them together.

41	

Bad	smells	in	code	
}  Speculative generality

}  “We	might	need	this	one	day	…”	
}  Fair	enough,	but	did	you	really	need	it	after	all?	
}  Extra	classes	and	features	add	to	complexity.	

}  “Extreme	Programming”	philosophy:	
}  “As	simple	as	possible	but	no	simpler.”	
}  “Rule	of	three”.	

}  Keep	in	mind	that	refactoring	is	an	ongoing	process.	
}  If	you	really	do	need	it	later,	you	can	add	it	back	in.	
(Collapse hierarchy, inline class, remove parameter)

42	

Bad	smells	in	code	
}  Message chains

}  A	client	asks	one	object	for	another	object,	which	the	client	then	
asks	for	yet	another	object,	which	the	client	then	asks	for	yet	
another	another	object,		

}  Navigating	this	way	means	the	client	is	coupled	to	the	structure	of	
the	navigation.		

}  Any	change	to	the	intermediate	relationships	causes	the	client	to	
have	to	change	(cf.	Law	of	Demeter)	

}  Solution:	Hide delegate

Hide delegate refactoring	

Einführung	in	die	Softwaretechnik	43	

A client is calling a delegate class of an object.
Create methods on the server to hide the delegate.

44	

Bad	smells	in	code	
}  Middle man

}  “All	hard	problems	in	software	engineering	can	be	solved	by	an	
extra	level	of	indirection.”	
}  OODPs	pretty	well	all	boil	down	to	this,	albeit	in	quite	clever	and	

elegant	ways.	

}  If	you	notice	that	many	of	a	class’s	methods	just	turn	around	and	
beg	services	of	delegate	subobjects,	the	basic	abstraction	is	
probably	poorly	thought	out.	

}  An	object	should	be	more	than	the	sum	of	its	parts	in	terms	of	
behaviours!	

(Remove middle man, replace delegation with inheritance)

Remove	Middle	Man	Refactoring

Einführung	in	die	Softwaretechnik	45	

A class is doing too much simple delegation.
Get the client to call the delegate directly

Replace	Delegation	with	Inheritance

Einführung	in	die	Softwaretechnik	46	

You're using delegation and are often writing many
simple delegations for the entire interface.

Make the delegating class a subclass of the delegate

47	

Bad	smells	in	code	
}  Inappropriate intimacy

}  Sharing	of	secrets	between	classes,	esp.	outside	of	the	holy	bounds	
of	inheritance	
e.g.,	public	variables,	indiscriminate	definitions	of	get/set	methods,	C++	

friendship,	protected	data	in	classes	
}  Leads	to	data	coupling,	intimate	knowledge	of	internal	structures	

and	implementation	decisions.	
}  Makes	clients	brittle,	hard	to	evolve,	easy	to	break.	

}  Solution:	
}  Appropriate	use	of	get/set	methods	
}  Rethink	basic	abstraction.	
}  Merge	classes	if	you	discover	“true	love”	
(Move/extract method/field, change bidirectional association to

unidirectional, hide delegate)

48	

Bad	smells	in	code	

}  Alternative classes with different interfaces
}  Classes/methods	seem	to	implement	the	same	

or	similar	abstraction	yet	are	otherwise	
unrelated.	

}  Solution:	
}  Move	the	classes	“closer”	together.	

¨  Find	a	common	interface,	perhaps	an	ABC.	
¨  Find	a	common	subpart	and	remove	it.	

(Extract	[super]class,	move	method/field,	rename	
method)	

Extract	Superclass	Refactoring

Einführung	in	die	Softwaretechnik	49	

You have two classes with similar features.
Create a superclass and move the common features to the superclass.

50	

Bad	smells	in	code	

}  Data class
}  Class	consists	of	(simple)	data	fields	and	simple	accessor/mutator	

methods	only.	
}  Solution:	

}  Have	a	look	at	usage	patterns	in	the	clients	
}  Try	to	abstract	some	commonalities	of	usage	into	methods	of	the	data	

class	and	move	some	functionality	over	
}  “Data	classes	are	like	children.		They	are	OK	as	a	starting	point,	but	

to	participate	as	a	grownup	object,	they	need	to	take	on	some	
responsibility.”	

(Extract/move method)

51	

Bad	smells	in	code	
}  Comments

}  XP	philosophy	discourages	comments,	in	general:	
}  Instead,	make	methods	short	and	use	long	identifiers			

}  In	the	context	of	refactoring,	Fowler	claims	that	long	
comments	are	often	a	sign	of	opaque,	complicated,	
inscrutable	code.	
}  They	aren’t	against	comments	so	much	as	in	favour	of	self-

evident	coding	practices.	
}  Rather	than	explaining	opaque	code,	restructure	it!	
(Extract method/class, [many others applicable] …)

}  Comments	are	best	used	to	document	rationale	
i.e.,	explain	why	you	picked	one	approach	over	another.	

52	

Summary	
}  Fowler	et	al.‘s	Refactoring	is	a	well-written	book	that	summarizes	a	lot	of	

“best	practices”	of	OOD/OOP	with	nice	examples.	
}  Many	books	on	OOD	heuristics	are	vague	and	lack	concrete	advice.	
}  Most	of	the	advice	in	this	book	is	aimed	at	low-level	OO	programming.	

}  i.e.,	loops,	variables,	method	calls,	and	class	definitions.	
}  Next	obvious	step	up	in	abstraction/scale	is	to	OODPs.	

}  i.e.,	collaborating	classes	

}  This	is	an	excellent	book	for	the	intermediate-level	OO	programmer.	
}  Experienced	OO	programmers	will	have	discovered	a	lot	of	the	techniques	

already	on	their	own.	

}  Many	sources	about	refactoring	on	the	web:	
}  http://refactoring.com/	

Testing	

Some	slides	by	T.	Ball	and	J.	Aldrich	

Einführung	in	die	Softwaretechnik	53	

Why	test?	

Einführung	in	die	Softwaretechnik	54	

Testing:	Challenges	

Einführung	in	die	Softwaretechnik	55	

}  Testing	is	costly	
}  Test	effectiveness	and	software	quality	hard	to	measure	
}  Incomplete,	informal	and	changing	specifications	
}  Downstream	cost	of	bugs	is	enormous	
}  Lack	of	spec	and	implementation	testing	tools	
}  Integration	testing	across	product	groups	
}  Patching	nightmare	
}  Versions	exploding	

Example:	Testing	MS	Word	

Einführung	in	die	Softwaretechnik	56	

}  inputs	
}  keyboard	
}  mouse/pen	
}  .doc,	.htm,	.xml,	…	

}  outputs	(WYSIWYG)	
}  Printers	
}  displays	
}  doc,	.htm,	.xml,	…	

}  variables	
}  fonts	
}  templates	
}  languages	
}  dictionaries	
}  styles	

}  	Interoperability	
}  Access	
}  Excel	
}  COM	
}  VB	
}  sharepoint	

}  Other	features	
}  34	toolbars	
}  100s	of	commands	
}  ?	dialogs	

}  Constraints	
}  huge	user	base	

From	Microsoft	Office	EULA…	

Einführung	in	die	Softwaretechnik	57	

From	GPL	

Einführung	in	die	Softwaretechnik	58	

The	goals	of	testing	

Einführung	in	die	Softwaretechnik	59	

}  Not-quite-right	answers	
}  Make	sure	it	doesn’t	crash	
}  Regression	testing	–no	new	bugs	
}  Make	sure	you	meet	the	spec	
}  Make	sure	you	don’t	have	harmful	side	effects	

}  Actual	goals	
}  Reveal	faults	
}  Establish	confidence	
}  Clarify	or	represent	the	specification	

THE	limitation	of	testing	

Einführung	in	die	Softwaretechnik	60	

Testing	can	only	show	the	presence	
of	errors,	not	their	absence	

-	E.W.	Dijkstra	

…	to	be	continued	in	the	next	lecture!	

