Software Engineering
6. Design Patterns

Jonathan Brachthauser

Software Engineering

Einordnung

Problem
Continuous Delivery & Feedback

Anforderungsermittiung

- (Nicht-)funktionale Anf. oV
. \%
- Anwendungsfille «00
- Userstories _(\oo\
<

Modellierung
- UML

- O0-Design
Design / Architektur Patterns
- SOLID Design Prinzipien

- GRASP

Anforderung

Entwurf

Realisierung
Programmierrichtlinien
Code Smells
Dokumentation
Refactorings

» 2 Software Engineering

GRASP (continued)

Nine GRASP patterns:

Information Expert
Creator
Low Coupling

Controller

High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Controller

Problem:

Who should be responsible for handling an input system
event?

Solution:

Assign the responsibility for receiving or handling a system
event message to a class representing the overall system,
device, or subsystem (facade controller) or a use case
scenario within which the system event occurs (use case
controller)

Controller: Example
:

Rrom 10 I
Ouantity | J
presses button
"""""""""""" > Emter Rem Andsoon...
:Cashier
i actionPerformed(actionEvent)
Interface SaleJF
Layer
system event message \
‘ enteritem(itemID, qty) ©
Which class of object should be responsible for receiving this k
Domain 272 system event message?
Layer o - _ ,
It is sometimes called the controller or coordinator. It does not
1 l L normally do the work, but delegates it to other objects.
The controller is a kind of "facade” onto the domain layer from
the interface layer.

» 7 Einfihrung in die Softwaretechnik

Controller: Discussion

4

Normally, a controller should delegate to other objects the
work that needs to be done; it coordinates or controls the
activity. It does not do much work itself.

Facade controllers are suitable when there are not "too
many" system events

A use case controller is an alternative to consider when
placing the responsibilities in a facade controller leads to
designs with low cohesion or high coupling

typically when the facade controller is becoming "bloated" with
excessive responsibilities.

Einfihrung in die Softwaretechnik

Controller: Discussion

» Benefits

Increased potential for reuse, and pluggable interfaces
No application logic in the GUI

Dedicated place to place state that belongs to some use case

E.g. operations must be performed in a specific order

» Avoid bloated controllers!

E.g. single controller for the whole system, low cohesion, lots of
state in controller

Split into use case controllers, if applicable

» Interface layer does not handle system events

9 Einfihrung in die Softwaretechnik

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion

Polymorphism

Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Polymorphism

Problem:
How to handle alternatives based on types?
How to create pluggable software components?
Solution:

When alternate behaviours are selected based on the type
of an object, use polymorphic method call to select the
behaviour, rather than using if/case statement to test the

type.

11

Polymorphism: Example

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineltems

-~ ~N
P ~ I N ~
-~ - I ~N
~N
~ I
-~ N,
TaxMasterAdapter GoodAsGoldTaxPro <??77>Adapter

Adapter

getTaxes(Sale) : List of TaxLineltems

getTaxes(Sale) : List of TaxLineltems

» 12 Einfihrung in die Softwaretechnik

Polymorphism: Discussion

» Polymorphism is a fundamental principle in designing how
a system is organized to handle similar variations.

» Properties:
Easier and more reliable than using explicit selection logic
Easier to add additional behaviors later on

Increases the number classes in a design
May make the code less easy to follow

13

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Pure Fabrication

Problem:
Adding some responsibilities to domain objects would
violate high cohesion/low coupling/reuse

Solution:

Assign a highly cohesive set of responsibilities to an
artificial or convenience class that does not represent
a problem domain concept—something made up, to
support high cohesion, low coupling, and reuse.

15

Pure Fabrication: Example

4

In the point of sale example support is needed to save Sale
instances in a relational database.

By Expert, there is some justification to assign this
responsibility to Sale class.

However, the task requires a relatively large number of
supporting database-oriented operations and the Sale class
becomes incohesive.

The sale class has to be coupled to the relational database
increasing its coupling.

Saving objects in a relational database is a very general task for
which many classes need support. Placing these responsibilities
in the Sale class suggests there is going to be poor reuse or lots
of duplication in other classes that do the same thing.

16

Pure Fabrication : Example

» Solution: create a new class that is solely responsible for saving
objects in a persistent storage medium

» This class is a Pure Fabrication

PersistentStorage

By Pure Fabrication H ---------- 0

insert(Object)
update(Object)

» The Sale remains well-designed, with high cohesion and low coupling
» The PersistentStorageBroker class is itself relatively cohesive
» The PersistentStorageBroker class is a very generic and reusable object

17

Pure Fabrication: Discussion

» The design of objects can be broadly divided into two
groups:
Those chosen by representational decomposition (e.g. Sale)
Those chosen by behavioral decomposition (e.g. an algorithm
object such as TOCGenerator or PersistentStorage)

» Both choices are valid designs, although the second one
corresponds less well to the modeling perspective on
objects

18

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion

Polymorphism

Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Indirection

Problem:

Where to assigh a responsibility, to avoid direct coupling
between two (or more) things?

How to de-couple objects so that low coupling is supported
and reuse potential remains higher?

Solution:

Assign the responsibility to an intermediate object to mediate
between other components or services, so that they are not
directly coupled.

"Most problems in computer science can be solved
by another level of indirection"

20

Indirection: Example

t:= getTotal() .l I TCP socket

communlcatlon‘| %

|

E «system»
|
!

taxes := getTaxes(s)

e o

: TaxMaste

-
-
-
......
.. "
.. -
. -
-
. -*
e

the adapter acts as a lev
of indirection to external

systems

By adding a level of indirection and adding polymorphism, the adapter objects

protect the inner design against variations in the external interfaces

» 21 Einfihrung in die Softwaretechnik

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Protected Variation

Problem:

How to design objects, subsystems, and systems so that the
variations or instability in these elements does not have an
undesirable impact on other elements?

Solution:

ldentify points of predicted variation or instability; assign
responsibilities to create a stable interface around them.

Note: This is basically just another formulation of the information
hiding principle.

23 Einfihrung in die Softwaretechnik

Protected Variation: Examples

» Data encapsulation, interfaces, polymorphism, indirection,
and standards are motivated by PV.

» Virtual machines are complex examples of indirection to
achieve PV

» Service lookup: Clients are protected from variations in
the location of services, using the stable interface of the
lookup service.

» Uniform Access Principle
» Law of Demeter

24 Einfihrung in die Softwaretechnik

25

Design Patterns

Literaturhinweis

Design Pattems

Elements of Reuss

Ralph Johr
John

» 26 Software Engineering

What is a pattern?

A design pattern describes:
» A problem that occurs over and over again in our environment.

» The core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it
the same way twice.

Christopher Alexander, professor of architecture.

27 Einfihrung in die Softwaretechnik

What is a pattern?

Aggressive disregard of orginality.
Rule of three:

» Once it is an event.
» Twice it is an accident.

» Thrice it is a pattern.

28 Einfihrung in die Softwaretechnik

R. Martin's Chess Analogy

When people begin to play chess they learn the
rules and physical requirements of the game.
They learn the names of the pieces, the way they
move and capture, the board geometry and
orientation.

At this point, people can play chess, although
they will probably be not very good players.

As they progress, they learn the principles. They
learn the value of protecting the pieces, and their
relative value. They learn the strategic value of
the center squares and the power of a threat...

At this point, they can play a good game. They
know how to reason through the game and can
recognize “stupid” mistakes.

However, to become a master of
chess, one must study games of
other masters. Buried in those
games are patterns that must be
understood, memorized, and
applied repeatedly until they
become second nature.

There are thousands upon
thousands of these patterns.
Opening patterns are SO numerous
that there are books dedicated to
their variations. Midgame patterns
and ending patterns are also
prevalent, and the master must be
familiar with them all.

29 Einfihrung in die Softwaretechnik

Elements of Design Patterns

» Pattern Name
A short mnemonic to increase your design vocabulary.

> Intent
Description when to apply the pattern (conditions that have to be met
before it makes sense to apply the pattern).

» Solution
The elements that make up the design, their relationships,
responsibilities and collaborations.

» Consequences

Costs and benefits of applying the pattern. Language and implementation
issues as well as impact on system flexibility, extensibility, or portability.
The goal is to help understand and evaluate a pattern.

30 Einfihrung in die Softwaretechnik

Topics of this Lecture

» Design Patterns
Template
Strategy
Decorator

» These design patterns are less general than the GRASP
patterns

They focus on specific design problems

» These are some of the most common and most
important classical design patterns in OO design

31 Einfihrung in die Softwaretechnik

Template Method Pattern

» Intent

Separate policies from detailed mechanisms / invariant and
variant parts.

» Solution

Abstract classes define interfaces and implement high-level
policies

Detailed mechanisms are implemented in subclasses

» Avoid code duplication.

» The Template Method Pattern is at the core of the design
of object-oriented frameworks.

32 Einfihrung in die Softwaretechnik

Using the Template Method Pattern for Bubble-Sort

BubbleSorter
abstract

| IntBubbleSorter | | DoubleBubbleSorter |

public abstract class BubbleSorter ({

protected int length = 0;

protected void sort() {
if (length <= 1) return;

if (outOfOrder (index))
swap (index) ;

for (int nextTolast = length - 2; nextTolast >= 0; nextTolLast--)
for (int index = 0; index <= nextTolast; index++)

Policy

protected abstract void swap(int index) ;
protected abstract boolean outOfOrder (int index) ;

Mechanisms

33 Einfihrung in die Softwaretechnik

Filling the template for a specific sorting algorithmn

public class IntBubbleSorter extends BubbleSorter {

private int[] array = null;

public void sort(int[] theArray) {
array = theArray;
length = array.length;
super.sort() ;

}

protected void swap(int index) ({

Mechanisms

int temp = array[index];
array[index] = array[index + 1];
array[index + 1] = temp;

}

protected boolean outOfOrder (int index) ({
return array[index] > array[index + 1];

34 Einfihrung in die Softwaretechnik

Consequences

» Template method forces detailed implementations to
extend the template class.

» Detailed implementation depend on the template.

» Cannot re-use detailed implementations’ functionality.
(E.g., swap and out-of-order are generally useful.)

» If we want to re-use the handling of integer arrays with
other sorting strategies we must remove the dependency
this leads us to the Strategy Pattern.

35 Einfihrung in die Softwaretechnik

Strategy Pattern

» Intent

Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

» Solution

Define an interface for the varying implementation details,
implement in concrete strategies which can be passed along.

1 «interfacen
| Context I > Strategy

algorithmlnteﬁaceg

ConcreteStrategyA | | ConcreteStrategyB | | ConcreteStrategyC

alﬁrithmlnterfaceﬂ algorithmlnterfaceﬂ algorithmlnterfaceﬂ

36 Einfihrung in die Softwaretechnik

Strategy Pattern: Example

—
2 | BubbleSorter “orfacen
% SortHandle

| QuickSorter

| | IntSortHandle | | DoubleSortHandle | ‘

Strategies

37 Einfihrung in die Softwaretechnik

Giving the Strategy Visibility for the Context
» Two possible approaches:

» Pass the needed information as a parameter.
» Context and Strategy decoupled.
» Communication overhead.
» Algorithm can’t be adapted to specific needs of context.

» Context passes itself as a parameter or Strategy has a
reference to its Context.

» Reduced communication overhead.
» Context must define a more elaborate interface to its data.
» Closer coupling of Strategy and Context.

38 Einfihrung in die Softwaretechnik

Example: Passing Context Information to Strategy

interface ContextService { int foo (), }

class Context implements ContextServices ({
void highLevelPolicy (Strategy s) ({
. s.performAction (this)

}
interface Strategy ({
Result performAction (ContextService s);

39 Einfihrung in die Softwaretechnik

Strategy Pattern: Discussion

» Use if many related classes only differ in their behavior
rather than implementing different related abstractions.
Strategies allow to configure a class with one of many
behaviors.

» Use if you need different variants of an algorithm.
Strategies can be used when variants of algorithms are
implemented as a class hierarchy.

» Use if you need to modify the behavior of a class at

runtime (dynamically).

i.e. for instance the "Attack"” of a computer game character
depends on its equipment which changes at runtime.

40 Einfihrung in die Softwaretechnik

Decorator Pattern

» Intent
We need to add responsibilities to existing individual objects
... dynamically and transparently, without affecting other objects.

... responsibilities can be withdrawn dynamically.

» Solution
Create a decorator (wrapper) around the individual object

... the decorator can modify the behavior of individual methods
before (or after) forwarding to the underlying object

41 Einfihrung in die Softwaretechnik

Motivation: Limitations of Inheritance

» Only using inheritance would produce an explosion of
subclasses to support every combination.

» No support for dynamic adaptation.

» A class definition may be hidden or otherwise unavailable for
subclassing

» Cannot change all constructor calls to the class whose object
are to be extended

» A call to new fixes the runtime behavior once and for all!

42 Einfihrung in die Softwaretechnik

Limitations of Inheritance: Example

ByteArray
InputStream

InputStream
File Piped
InputStream InputStream
Evolution:

Adding functionality to a ByteArraylnputStream to read whole
sentences and not just single bytes.

43 Einfihrung in die Softwaretechnik

Limitations of Inheritance: Example

InputStream

Piped
InputStream

ByteArray
InputStream

File
InputStream

ByteArrayData
InputStream

Evolution:
We also want to have the possibility to read
whole sentences using FilelnputStreames...

44 Einfihrung in die Softwaretechnik

After the n-th iteration...

InputStream

ByteArray
InputStream

Piped
InputStream

File
InputStream

ByteArrayPushback
InputStream

ByteArrayBuffered
InputStream

PipedData PipedPushback
InputStream InputStream

PipedBuffered ByteArrayData
InputStream InputStream

» Problems:
» ...a new class for each responsibility.

» responsibility mix fixed statically.
(How about PipedDataBufferedInputStream?)

» non-reusable extensions; code duplication;
» maintenance nightmare: exponential growth of number of classes

» 45 Einfihrung in die Softwaretechnik

Multiple Inheritance is no Solution Either

InputStream q Filter
File InputStream
InputStream

ByteArray
InputStream

ZS Data Buffered
InputStream | | InputStream
ByteArrayData ByteArrayBuffered |/
InputStream InputStream)

“Multiple inheritance is good, but there is no

» static responsibility mix

good way to do it.”
» naming conflicts A. SYNDER

» hard to dispatch super calls correctly

» 46 Einfihrung in die Softwaretechnik

Structure of the Decorator Pattern

Component

operation

™ T e m m e e Em S e — —-— e e w— -y

ConcreteComponent Decorator

oEerationsz operation

«method» ==

component.operation ;- ----- - - -;

1 1
ConcreteDecoratorB ConcreteDecoratorA

“method» addedState
super.operation() - — -goperation() operation()

Intent: We need to add responsibilities to existing individual objects

dynamically and transparently, without affecting other objects.

» 47 Einfihrung in die Softwaretechnik

Example: Decorator in java.io

InputStream |«

File Piped ByteArray Filter o—
InputStream | | InputStream | | InputStream | InputStream
Data Buffered Pushback
InputStream | | InputStream InputStream

» java.io abstracts various data sources and destinations, as
well as processing algorithms:
Programs operate on stream objects ...

independently of ultimate data source / destination / shape of
data.

48 Einfihrung in die Softwaretechnik

Decorator Pattern: Discussion

» Decorator enables more flexibility than inheritance:
» Responsibilities can be added / removed at run-time.

» Different Decorator classes for a specific Component class
enable to mix and match responsibilities.

» Easy to add a responsibility twice; e.g., for a double
border, attach two BorderDecorators

» Decorator avoids incoherent classes:

functionality can be composed from simple pieces.
an application does not need to pay for features it doesn't use.

49 Einfihrung in die Softwaretechnik

Decorator: Problems

» Lots of little objects

A design that uses Decorator often results in systems composed
of lots of little objects that all look alike.

Objects differ only in the way they are interconnected, not in

their class or in the value of their variables.
Imagine a class to draw a border around a component..

Such systems are easy to customize by those who understand
them, but can be hard to learn and debug.

» Object identity

50

A decorator and its component aren't identical.
From an object identity point of view, a decorated component is
not identical to the component itself.

You shouldn't rely on object identity when you use decorators

Einfihrung in die Softwaretechnik

Decorator: Problems

» No late binding
DELEGATION VERSUS FORWARD SEMANTICS

this this
¢ SRS SRSS -
' I
g ’
----@-ﬁr"-- -—)é*rsn:ﬁ@—)
message message message message
receiver holder receiver holder
Forwarding with binding of this to Binding of this to message receiver:
method holder; "ask" an object to do “ask” an object to do something on
something on its own. behalf of the message receiver.

51 Einfihrung in die Softwaretechnik

No Late Binding: Example

re=—=========-= -

| |

| |

1 1

CheckingAccount SavingsAccount
ErintHistomz,_ ErintHistogm
1 Vi
«method» = «method» e

... getTypel(); ...

... getType(); ...

"

«method»
return type; -

-

Account
{abstract}

type : String

~egetType() : Sting | ccount
erintHistoz“
de e = “
|
|
|
OnlineAccount
getType() : String ’
. ErintHistomz !
P I
”~
7 «method»
- l return "online"+account.gethEe;;: |

«method»
account.printHistory();

Einfihrung in die Softwaretechnik

Decorator: Problems

» Need to implement forwarding methods for those
methods not relevant to the decorator

A lot of repetitive programming work

A maintenance problem: What if the decorated class changes

Adding new methods or removing methods that are
irrelevant to the decorators

Decorator classes need to change as well

This is a variant of the so-called “fragile base class problem”

53 Einfihrung in die Softwaretechnik

54

Frameworks & Libraries

What is an (OO) Framework?

» A set of cooperating classes that makes up a reusable
design.
» A framework provides architectural guidance by

partitioning the design into abstract classes and defining
their responsibilities and collaborations.

» A developer customizes the framework to a particular
application by subclassing and composing instances of
framework classes.

» A framework solves problem in a particular problem
domain.

55 Software Engineering

What is a library?

» A set of reusable coherent programming abstractions
(classes, methods, functions, data structures)

» Focus on black-box reuse.

» Sometimes a library can be seen (and used as) a domain-
specific language (DSL).

56 Software Engineering

Libraries vs. Frameworks

Traditional libraries Frameworks
user-supplied Framework
code
/ | \ / | \ user-supplied
library code code

» Control flow is dictated by the framework and is the same
for all applications.

» The framework is the main program in coordinating and
sequencing application activity. i.e., it manages the object
lifecycle

57 Software Engineering

Libraries vs. Frameworks

» ,Traditional” difference: Who is in charge of the control
flow (Inversion of Control)

» However, this difference is only well-defined if one
considers libraries that can only be parameterized by first-
order values

» Libraries that accept higher-order parameters (such as
first-class functions or objects) are quite similar to
frameworks

58 Software Engineering

Libraries vs. Frameworks

» Remaining difference: Frameworks are often white-box,
glass-box or grey-box, whereas libraries are more black-
box

» Frameworks can be adapted in more ways, also ways not
anticipated by the framework developer

» Library developers must anticipate every extension point,
but in turn libraries can be changed more easily without
invaliding clients

» No strict discrimination between the two terms possible

59 Software Engineering

Frameworks vs. Design Patterns

» Patterns are smaller than frameworks.
» A framework contains many patterns (Visitor, Decorator etc.).

» The opposite is not true.

» Patterns are language independent.
» Patterns solve OO language issues (Java, C++, Smalltalk).

» Frameworks are written in a specific programming language.

» Patterns are more abstract than frameworks.
» Patterns do not solve application domain specific problems.

» Frameworks provide support for a particular application domain.
Frameworks provide reusable code

60 Software Engineering

Frameworks vs. Designh Patterns

» Frameworks describe:

» the interface of each object and the flow of control
between them.

» how the responsibilities are mapped onto its objects
» Again, in other words:

» A Framework provides architectural guidance

» by partitioning the design into abstract classes and

» defining their responsibilities and collaborations.

The high level design is the main intellectual content of
software, and frameworks are a way to reuse it!

61 Software Engineering

A Framework is not...

» ... adesign pattern.
» patterns describe ideas and perspectives;
» frameworks are implemented software.

» ... an application.

» frameworks do not necessarily provide a default behavior,
hence they are not executable programs;

» They can be perceived as a partial design but they do not
describe every aspect of an application.

» ... aclass library.

» applications that use classes from a library invoke predefined
methods, whereas frameworks invoke predefined methods
supplied by the user.

62 Software Engineering

63

Library Design Principles

Libraries

4

The oldest, most common, and most successful way of
reusing code

Languages are designed to support libraries

» Works together with static typing, import/export

v v VvV v

mechanisms, separate compilation, ...
Composability with other libraries

Support by type and module system
Information hiding, substitutability, ...

But libraries need a good design to be useful!

64 Software Engineering

(Sub-) Package vs. Library

My Softwaresystem My Softwaresystem
Other components Other components
AN
Component ’ v
as package
<<interface>> 4+

Component
as library

65 Software Engineering

Basic Library Design Principles

» Libraries should be as context-independent as possible
» Every context dependency limits reusability

» Context dependencies (e.g. on other libraries) should be
expressed via interfaces

» Libraries should have a clean, well-defined scope
» Library should have a well-defined interface
» To make black-box usage possible

» Interface should be cleanly separated from
implementation details

» E.g. via separate packages

66 Software Engineering

Basic Library Design Principles (2)
» Library designer has to think about variability points of
the library
» Different form of variability
» Parameterization by values
» Parameterization by types
» Parameterization by functions/closures or objects

67 Software Engineering

68

Customizing Frameworks

Customization Points

» So far, we talked about frameworks being semi-complete
applications that developers need to extend to make
them work as application.

» Thus, the question arises how one can customize a
framework.

69 Software Engineering

Simplified Representation of a Framework

» Nodes represent classes, links between nodes represent
associations between classes used for collaboration
between classes.

O

70 Software Engineering

Framework HotSpots

» Since frameworks are incomplete there must be some
points in the design allowing a developer to extend the
framework. This extension points are called hot spots.

Parts of the framework that are
open to extension and
customization are called hot spots

71 Software Engineering

Simplified Representation of a Framework

» Nodes represent classes, links between nodes represent
associations between classes used for collaboration
between classes.

Parts of the framework that are
not open to extension are called
cold or frozen spots

72 Software Engineering

How to extend a framework concretely?

» You learned that there are some parts that can be
extended and some can’t. But how do you do that
actually?

» The short answer: It depends.

» Before explaining that, we need to introduce another
classification for frameworks.

73 Software Engineering

Framework Classification by Extensibility

» We distinguish three different kinds of extensibility

_White-box - Grey-bo: Black-box >

74 Software Engineering

White-Box Extensibility

» White-box frameworks can be extended by

modifying or adding to the original source
code.

» Least restrictive & Most flexible
» We can distinguish between
» Open-Box Extensibility

» Changes are immediately performed on
the original sourcecode

» Glass-Box Extensibility

» Original source code is known but
untouched

» Predefined hooks are necessary

75 Software Engineering

White-box

Black-Box Extensibility

» No internal details about the original
system are known

» Only interfaces are known

» Extension points have to be well-
preplanned and documented

» Most-restrictive and limited approach
» Easier to learn

76 Software Engineering

Black-box

Grey-Box Extensibility

» Grey-box extensibility uses both
parametrization and refinement

» Frameworks typically evolve from white-
box to black-box frameworks over a
number of iterations:

White-box ., Black-box

- J
Y

Grey-box
» However, it will be hard to find pure black-
box frameworks. Typically, they contain a
few white-box elements too.

77 Software Engineering

Inversion of Control, or ...

“Don’t call us -
we call you!”

.

-

" \: r <
’\ . "
b
c s ™Y o I ™

The... & L :

HOLLYWNOOD

Principle

Software Engineering

Dependency Inversion via Strategy Pattern

» Dependency Inversion is the most essential principle
applied on frameworks.

Collections <<interface>>
Comparator<T>

+ sort(List, Comparator) + compare(T, T)

+ equals(Obiject)

e

MyComparator

+ compare(T, T)
+ equals(Obiject)

79 Software Engineering

Dep. Inversion via Hooks and Template Method

» Can also be achieved using the template method pattern

<<abstract>>
Appender MyAppender
Skeleton |
|
+ doAppend(LoggingEvent) + append(LoggingEvent)
+ append/LoggingEvenj}

» Which is the template method? Which the hook method?

80 Software Engineering

Benefits of using Frameworks

» Extensibility

» Framework enhances extensibility by providing explicit
hook methods.

» Hook methods systematically decouple the stable
interfaces and behaviors of an application domain from
a particular context.

» Inversion of control
» 10C leads to reduced coupling between components
» Increases testability

81 Software Engineering

Weaknesses when using Frameworks
» Learning curve

» it often takes several months become highly productive with a
complex framework

» Integratability

» Application development will be increasingly based on
integration of multiple frameworks together with class
libraries, legacy systems and existing components in one
application

» Maintainability

» As frameworks evolve, the applications that use them must
evolve with them ...

» Efficiency
» In Terms of memory usage, system performance...

82 Software Engineering

83

Erinnerung
Nachste Woche: Gastvortrag zu TDD & CI

