Software Engineering
5. Software Design und Design Prinzipien

Jonathan Brachthauser

Software Engineering

Einordnung

Problem
Continuous Delivery & Feedback

Anforderungsermittiung

- (Nicht-)funktionale Anf. oV
. \%
- Anwendungsfille «00
- Userstories _(\oo\
<

Modellierung
- UML

- O0-Design
- Design / Architektur Patterns
SOLID Design Prinzipien

- GRASP

Anforderung

Entwurf

Realisierung
Programmierrichtlinien
Code Smells
Dokumentation
Refactorings

» 2 Software Engineering

Software Design

Software Engineering

Goal of Software Design

» For each desired program behavior there are infinitely
many programs that implement this behavior
What are the differences between the variants?
Which variant should we choose?

» Since we usually have to synthesize (i.e. create) rather
than choose the solution...
How can we design a variant that has the desired properties?

4 Software Engineering

Example - Variant A

» Sorting with configurable order, variant A

void sort(int[] 1ist, String order) {

boolean mustswap;

if (order.equals ("up")) {
mustswap = Iist[i] < list[j];

} else if (order.equals ("down")) {
mustswap = Ilist[i] > l1ist[j];

}

5 Software Engineering

Example - Variant B
» Sorting with configurable order, variant B

void sort(int[] Ilist, Comparator cmp) {

boolean mustswap = cmp.compare(list[i], 1ist[]]);

}
interface Comparator {
boolean compare(int i, int 7);

}

class UpComparator implements Comparator ({
boolean compare(int i, int j) { return 1 < 7j; }}

class DownComparator implements Comparator ({
boolean compare(int i, int j) { return 1 > 7; }}

(by the way, this design is called “strategy pattern”)

6 Software Engineering

Quality of a Software Design

» How can we measure the internal quality of a software
design?
Extensibility, Maintainability, Understandability, Readability, ...
Robustness to change
Low Coupling & High Cohesion
Reusability

All these qualities are typically summarized by the term
modularity

» ...as opposed to external quality
Correctness: Valid implementation of requirements
Ease of Use
Resource consumption
Legal issues, political issues, ...

7 Software Engineering

Modularity

» In the following we’ll elaborate on that:
Five Criteria
Five Rules

9 Software Engineering

Five Criteria: Modular Decomposability (1)

A software construction method satisfies Modular
Decomposability if it helps in the task of decomposing a.
software problem into a small number of less complex
subproblems, connected by a simple structure, and
independent enough to allow further work to proceed
separately on each of them.

10 Software Engineering

Five Criteria: Modular Decomposability (1)

» Modular Decomposability implies: Division of Labor
possible!

» Example: Top-Down Design

» Counter-Example:

Image Source: http://www.darxstudios.com/darx-studios/2014/7/19/design-patterns-the-strategy-pattern

11 Software Engineering

http://www.darxstudios.com/darx-studios/2014/7/19/design-patterns-the-strategy-pattern

Five Criteria: Modular Composability (2)

A method satisfies Modular Composability if it favors the
products of software elements which may then be freely
combined with each other to produce new systems, possibly
in an environment quite different from the one in which
they were initially developed.

12 Software Engineering

Five Criteria: Modular Composability (2)

» Is “dual” to modular decomposability

» |Is directly connected with reusability

Old “dream” of programming: programming as construction box
activity

» Well-defined interfaces are of utmost importance to
achieve modular composability

» Example 1: Libraries have been reused successfully in
countless domains

» Example 2: Unix Shell Commands

13 Software Engineering

Five Criteria: Modular Understandability (3)

A method favors Modular Understandability if it helps
produce software in which a human reader can understand
each module without having to know the others, or, at
worst, by having to examine only a few of the others.

14 Software Engineering

Five Criteria: Modular Understandability (3)

» Important for maintenance
» Applies to all software artifacts, not just code

» Again: Interfaces are needed to protect from unnecessary
details
» Counter-examples:

Complex call graphs between many different modules

Complex use of object state and side effects across module
boundaries

15 Software Engineering

Five Criteria: Modular Continuity (4)

A method satisfies Modular Continuity if, in the software

architectures that it yields, a small change in the problem

specification will trigger a change of just one module, or a
small number of modules.

16 Software Engineering

Five Criteria: Modular Continuity (4)

» Example 1: Symbolic constants (as opposed to magic
numbers)

» Example 2: Hiding data representation behind an interface

» Counter-Examples:

Program designs depending on fragile details of hardware or
compiler

17 Software Engineering

Five Criteria: Modular Protection (5)

A method satisfied Modular Protection if it yields
architectures in which the effect of an abnormal condition
occurring at run time in a module will remain confined to

that module, or at worst will only propagate to a few
neighboring modules.

18 Software Engineering

Five Criteria: Modular Protection (5)

» Motivation: Big software will always contain bugs etc.,
failures unavoidable

» Example: Defensive Programming

» Counter-Example: An erroneous null pointer in one
module leads to an error in a different module

19 Software Engineering

Five Rules

» Five Rules will follow which we must observe to ensure
high-quality design

20 Einfihrung in die Softwaretechnik

Five Rules: Direct Mapping

The modular structure devised in the process of building a
software system should remain compatible with any
modular structure devised in the process of modeling the
problem domain.

21 Einfihrung in die Softwaretechnik

Five Rules: Direct Mapping

» Follows from continuity and decomposability

» A.k.a. “low representational gap”[C. Larman]

22 Einfihrung in die Softwaretechnik

Five Rules: Few Interfaces

If two modules communicate, they should use as few
interfaces as possible

23 Einfihrung in die Softwaretechnik

Five Rules: Few Interfaces

Types of module
interconnection

Structures

(A) (B) (€)

» We want topology with few connections

» Follows from continuity and protection; otherwise
changes/errors would propagate more

24 Einfihrung in die Softwaretechnik

Five Rules: Small Interfaces

If two modules communicate, they should exchange as little
information as possible

25 Einfihrung in die Softwaretechnik

Five Rules: Small Interfaces

» Follows from continuity and protection, required for
composability

» The more detailed the exchanged information is, the
higher the coupling

26 Einfihrung in die Softwaretechnik

Five Rules: Explicit Interfaces

Whenever two modules A and B communicate, this must be
obvious from the interface of A or B or both.

27 Einfihrung in die Softwaretechnik

Five Rules: Explicit Interfaces

» Counter-Example 1: Global Variables

» Counter-Example 2: Aliasing — mutation of shared heap
structures

28 Einfihrung in die Softwaretechnik

Intermezzo: Law of Demeter (LoD)

» LoD: Each module should have only limited knowledge
about other units: only units "closely" related to the
current unit

» In particular: Don’t talk to strangers!
» For instance, no a.getB().getC().foo()
» Motivated by continuity

29 Einfihrung in die Softwaretechnik

Five Rules: Information Hiding

The designer of every module must select a subset of the
module’s properties as the official information about the
module, to be made available to authors of client modules.

30 Einfihrung in die Softwaretechnik

Five Rules: Information Hiding

Public Part

Secret Part

» 31 Einfihrung in die Softwaretechnik

Five Rules: Information Hiding

» ldea: hide implementation details that are likely to change
» Implied by continuity

» The iceberg analogy is slightly misleading, since an
interface also abstracts over the implementation

32 Einfihrung in die Softwaretechnik

GRASP

33

GRASP Patterns

» Object Design:

“After identifying your requirements and creating a domain
model, then add methods to the software classes, and define
the messaging between the objects to fulfill the requirements.”

But how?

What method belongs where?
How should the objects interact?
This is a critical, important, and non-trivial task

34 Einfihrung in die Softwaretechnik

GRASP Patterns

» The GRASP patterns are a learning aid to
help one understand essential object design
apply design reasoning in a methodical, rational, explainable
way.
» This approach to understanding and using design
principles is based on patterns of assigning
responsibilities

35 Einfihrung in die Softwaretechnik

GRASP - Responsibilities

» Responsibilities are related to the obligations of an object in
terms of its behavior.
» Two types of responsibilities:
knowing
doing
» Doing responsibilities of an object include:

doing something itself, such as creating an object or doing a
calculation

initiating action in other objects
controlling and coordinating activities in other objects

» Knowing responsibilities of an object include:
knowing about private encapsulated data

knowing about related objects
knowing about things it can derive or calculate

36 Einfihrung in die Softwaretechnik

GRASP

» Name chosen to suggest the importance of grasping
fundamental principles to successfully design object-
oriented software

» Acronym for General Responsibility
Assignment Software Patterns
(technically “GRASP Patterns” is hence
redundant but it sounds better)

» Describe fundamental principles of
object design and responsibility

» Expressed as patterns

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Information Expert

» Problem: What is a general principle of assigning
responsibilities to objects?

» Solution: Assign a responsibility to the information expert
the class that has the information necessary to fulfill the
responsibility

» Start assigning responsibilities by clearly stating

responsibilities!

» For instance, in a POS application a statement might be:
“Who should be responsible for knowing the grand total of
a sale”?

39 Einfihrung in die Softwaretechnik

Information Expert

» What information is needed to determine the grand total?

Sale
date
time
1
Contains
1.7
Product
Sales * 1 Specification
Lineltem Described-by
description
quantity price
itemID

» Sale is the information expert for this responsibility.

40 Einfihrung in die Softwaretechnik

Information Expert

» What information is needed to determine the line item
subtotal?

Sale

date

t := getTotal() . 1 *: st := getSubtotal() . :
:Sale :SalesLineltem

*

getTotal()

SalesLineltem

quantity

New method j O | getSubtotal()

41 Einfihrung in die Softwaretechnik

Information Expert

» To fulfill the responsibility of knowing and answering its
subtotal, a SalesLineltem needs to know the product
price.

» The ProductSpecification is an information expert on

answering its price; therefore, a message must be sent to
it asking for its price.

42 Einfihrung in die Softwaretechnik

Information Expert

» To fulfill the responsibility of knowing and answering the
sale's total, three responsibilities were assigned to three
design classes of objects

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal
ProductSpecification knows product price

43 Einfihrung in die Softwaretechnik

Information Expert: Final Design

Sale
date
t := getTotal() . Sale 17 st:= getSubiotel() :SalesLineltem ,| getTotal()
*
1.1: p := getPrice() SalesLineltem
quantity
M getSubtotal()
Specification
Product
Specification
description
price
itemID
New method j O | getPrice()

» 44 Einfihrung in die Softwaretechnik

Information Expert: Discussion

» Expert usually leads to designs where a software object
does those operations that are normally done to the
inanimate real-world thing it represents

a sale does not tell you its total; it is an inanimate thing

» In OO design, all software objects are "alive" or
"animated," and they can take on responsibilities and do

things.
» They do things related to the information they know.

45 Einfihrung in die Softwaretechnik

Information Expert: Discussion

» Contraindication: Conflict with separation of concerns
Example: Who is responsible for saving a sale in the database?
Adding this responsibility to Sale would distribute database
logic over many classes 2 low cohesion

» Contraindication: Conflict with late binding
Late binding is available only for the receiver object

But maybe the variability of late binding is needed in some
method argument instead

Example: Support for multiple serialization strategies

46 Einfihrung in die Softwaretechnik

Nine GRASP patterns:

Information Expert

Creator

Low Coupling
Controller
High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Creator

Problem:

Assign responsibility for creating a new instance of some
class?

Solution:

Determine which class should create instances of a class
based on the relationship between potential creator
classes and the class to be instantiated.

48

Creator

» who has responsibility to create an object?

» By creator, assign class B responsibility of creating instance of
class A if

B aggregates A objects

B contains A objects

B records instances of A objects

B closely uses A objects

B has the initializing data for creating A objects

» where there is a choice, prefer

B aggregates or contains A objects

49

Creator : Example

Who is responsible for creating SalesLineltem objects?

Look for a class that aggregates or contains SalesLineltem objects.

Sale
date
time
Contain
S
1.7
Product
Sales * Specification
Lineltem Described-
by description
quantity price
UPC

50

Creator : Example

Creator pattern suggests Sale.

Collaboration diagram is

create(quantity)

: Register ;Sale
T |
| |
I |
1 |
|
|
makeLineltem(quantity) :
-
|
|
|
|
|

51

>

: SalesLineltem

———— . ———————

Creator

» Promotes low coupling by making instances of a class
responsible for creating objects they need to reference

» By creating the objects themselves, they avoid being
dependent on another class to create the object for them

52

Creator: Discussion

» Contraindications:
creation may require significant complexity, such as

using recycled instances for performance reasons

conditionally creating an instance from one of a family of similar
classes based upon some external property value

Sometimes desired to outsource object wiring (“dependency
injection”)

» Related patterns:
Abstract Factory, Singleton, Dependency Injection

53 Einfihrung in die Softwaretechnik

Nine GRASP patterns:

Information Expert

Creator

Low Coupling

Controller
High Cohesion
Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Low Coupling

Problem:

How to support low dependency, low change impact, and
increased reuse.

Solution:
Assign a responsibility so that coupling remains low.

55

Why High Coupling is undesirable

» Coupling is a measure of how strongly one element is
connected to, has knowledge of, or relies on other

elements.
» An element with low (or weak) coupling is not dependent

on too many other elements (classes, subsystems, ...)
"too many" is context-dependent

» A class with high (or strong) coupling relies on many other
classes.
Changes in related classes force local changes.
Such classes are harder to understand in isolation.

They are harder to reuse because its use requires the additional
presence of the classes on which it is dependent.

56 Einfihrung in die Softwaretechnik

Low Coupling

How can we make classes independent of other classes?

changes are localised
easier to understand
easier to reuse

Who has responsibility to create a payment and associate it to a
sale?

r | o e :
i' Payment |: Register l [Sale |

57

Low Coupling

Two possibilities:

R

makePayment() . Register 1. create()—= .
. p: Payment
1. Register
2. addPayment(p) —»
oale
- -
makePayment() . . 1: makePayment() .
2. Sale Seasier Saln
1.1. create()
:Payment

Low coupling suggests Sale because Sale has to be

coupled to Payment anyway (Sale knows its total).
58

Common Forms of Coupling in OO Languages

» TypeX has an attribute (data member or instance variable) that
refers to a TypeY instance, or TypeY itself.

» TypeX has a method which references an instance of TypeY, or
TypeY itself, by any means.

Typically include a parameter or local variable of type TypeY, or the
object returned from a message being an instance of TypeY.

» TypeX is a direct or indirect subclass of TypeY.
» TypeY is an interface, and TypeX implements that interface.

59

Low Coupling: Discussion

4

Low Coupling is a principle to keep in mind during all
design decisions

It is an underlying goal to continually consider.

It is an evaluative principle that a designer applies while
evaluating all design decisions.

Low Coupling supports the design of classes that are more
independent
reduces the impact of change.

Can't be considered in isolation from other patterns such
as Expert and High Cohesion

Needs to be included as one of several design principles
that influence a choice in assigning a responsibility.

60 Einfihrung in die Softwaretechnik

Low Coupling: Discussion

» Subclassing produces a particularly problematic form of
high coupling
Dependence on implementation details of superclass
“Fragile Base Class Problem” [see SE Design Lecture]

» Extremely low coupling may lead to a poor design

Few incohesive, bloated classes do all the work; all other classes
are just data containers

» Contraindications: High coupling to very stable elements is
usually not problematic

61 Einfihrung in die Softwaretechnik

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion

Polymorphism
Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

High Cohesion

Problem:
How to keep complexity manageable.
Solution:
Assign responsibilities so that cohesion remains high.

Cohesion is a measure of how strongly related and focused
the responsibilities of an element are.

An element with highly related responsibilities, and which
does not do a tremendous amount of work, has high

cohesion

63

High cohesion

» Classes are easier to maintain

» Easier to understand

» Often support low coupling

» Supports reuse because of fine grained responsibility

64

High Cohesion

Who has responsibility to create a payment?

1.Register

: Register : Sale

|
|
makePayment() o

create()

» p:Payment

addPayment(p)

{::i____________

J

looks OK if makePayement considered in isolation, but adding
more system operations, Register would take on more and
more responsibilities and become less cohesive.

65

High Cohesion

Giving responsibility to Sale supports higher cohesion in Register, as well as

low coupling.
. Register : Sale
| |
I I
makePayment() . | :
makePayment() :

| create() 2 : Payment

66

High Cohesion: Discussion

» Scenarios:

Very Low Cohesion: A Class is solely responsible for many things in very
different functional areas

Low Cohesion: A class has sole responsibility for a complex task in one
functional area.

High Cohesion. A class has moderate responsibilities in one functional area
and collaborates with classes to fulfil tasks.

» Advantages:
Classes are easier to maintain
Easier to understand
Often support low coupling
Supports reuse because of fine grained responsibility

» Rule of thumb: a class with high cohesion has a relatively small
number of methods, with highly related functionality, and does not
do too much work.

67

Problem: High Cohesion and Viewpoints

.- —

7 |Clasx Tree 1~
(Attritutes: N — ™
1 FoodVae | Ko I
N Opemtions: 4

o) ComputeFight |~

o L
T a g S

A —— W N ——
- -——

Clask Treo e
Atributes: N\
Arsessed Value)
Opemations:
EstimaleValue yd
. ComputeTax o

-
—
S ——

68 Einflhrung in die Softwaretechnik [Harrison&Ossher 93]

Controller: Example
:

Rrom 10 I
Ouantity | J
presses button
"""""""""""" > Emter Rem Andsoon...
:Cashier
i actionPerformed(actionEvent)
Interface SaleJF
Layer
system event message \
‘ enteritem(itemID, qty) ©
Which class of object should be responsible for receiving this k
Domain 272 system event message?
Layer o - _ ,
It is sometimes called the controller or coordinator. It does not
1 l L normally do the work, but delegates it to other objects.
The controller is a kind of "facade” onto the domain layer from
the interface layer.

» 69 Einfihrung in die Softwaretechnik

Controller: Example

» By the Controller pattern, here are some choices:

» Register, POSSystem: represents the overall "system,"
device, or subsystem

» ProcessSaleSession, ProcessSaleHandler: represents a
receiver or handler of all system events of a use case

scenario

70 Einfihrung in die Softwaretechnik

Controller: Discussion

» Normally, a controller should delegate to other objects the
work that needs to be done; it coordinates or controls the
activity. It does not do much work itself.

» Facade controllers are suitable when there are not "too
many" system events

» A use case controller is an alternative to consider when
placing the responsibilities in a facade controller leads to
designs with low cohesion or high coupling

typically when the facade controller is becoming "bloated" with
excessive responsibilities.

71 Einfihrung in die Softwaretechnik

Controller: Discussion

» Benefits

Increased potential for reuse, and pluggable interfaces
No application logic in the GUI

Dedicated place to place state that belongs to some use case

E.g. operations must be performed in a specific order

» Avoid bloated controllers!

E.g. single controller for the whole system, low cohesion, lots of
state in controller

Split into use case controllers, if applicable

» Interface layer does not handle system events

72 Einfihrung in die Softwaretechnik

Polymorphism: Example

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineltems

-~ ~N
P ~ I N ~
-~ - I ~N
~N
~ I
-~ N,
TaxMasterAdapter GoodAsGoldTaxPro <??77>Adapter

Adapter

getTaxes(Sale) : List of TaxLineltems

getTaxes(Sale) : List of TaxLineltems

» 73 Einfihrung in die Softwaretechnik

Polymorphism: Discussion

» Polymorphism is a fundamental principle in designing how
a system is organized to handle similar variations.

» Properties:
Easier and more reliable than using explicit selection logic
Easier to add additional behaviors later on
Increases the number classes in a design
May make the code less easy to follow

» Using the principle excessively for “future-proofing”
against yet unknown potential future variations is a bad
idea

Agile methods recommend to do no significant “upfront design’
and add the variation point only when the need arises

)

74

Pure Fabrication: Example

4

In the point of sale example support is needed to save Sale
instances in a relational database.

By Expert, there is some justification to assign this
responsibility to Sale class.

However, the task requires a relatively large number of
supporting database-oriented operations and the Sale class
becomes incohesive.

The sale class has to be coupled to the relational database
increasing its coupling.

Saving objects in a relational database is a very general task for
which many classes need support. Placing these responsibilities
in the Sale class suggests there is going to be poor reuse or lots
of duplication in other classes that do the same thing.

75

Pure Fabrication : Example

» Solution: create a new class that is solely responsible for saving
objects in a persistent storage medium

» This class is a Pure Fabrication

PersistentStorage

By Pure Fabrication H ---------- 0

insert(Object)
update(Object)

» The Sale remains well-designed, with high cohesion and low coupling
» The PersistentStorageBroker class is itself relatively cohesive
» The PersistentStorageBroker class is a very generic and reusable object

76

Pure Fabrication: Discussion

» The design of objects can be broadly divided into two
groups:

Those chosen by representational decomposition (e.g. Sale)
Those chosen by behavioral decomposition (e.g. an algorithm
object such as TOCGenerator or PersistentStorage)

» Both choices are valid designs, although the second one
corresponds less well to the modeling perspective on
objects

» If overused, it can lead to a non-idiomatic design, namely
a separation of the code into data and behavior as in

procedural programming
Coupling of data and behavior is central to OO design

77

Nine GRASP patterns:

Information Expert
Creator

Low Coupling
Controller

High Cohesion

Polymorphism

Indirection

Pure Fabrication

vV Vv VvV Vv V9V V9vV V9V V9v v©v9

Protected Variations

Indirection

Problem:

Where to assigh a responsibility, to avoid direct coupling
between two (or more) things?

How to de-couple objects so that low coupling is supported
and reuse potential remains higher?

Solution:

Assign the responsibility to an intermediate object to mediate
between other components or services, so that they are not
directly coupled.

"Most problems in computer science can be solved
by another level of indirection"

79

Indirection: Example

t:= getTotal() .l I TCP socket

communlcatlon‘| %

|

E «system»
|
!

taxes := getTaxes(s)

e o

: TaxMaste

-
-
-
......
.. "
.. -
. -
-
. -*
e

the adapter acts as a lev
of indirection to external

systems

By adding a level of indirection and adding polymorphism, the adapter objects

protect the inner design against variations in the external interfaces

» 80 Einfihrung in die Softwaretechnik

Protected Variation: Examples

» Data encapsulation, interfaces, polymorphism, indirection,
and standards are motivated by PV.

» Virtual machines are complex examples of indirection to
achieve PV

» Service lookup: Clients are protected from variations in
the location of services, using the stable interface of the
lookup service.

» Uniform Access Principle
» Law of Demeter

81 Einfihrung in die Softwaretechnik

Literature

» Craig Larman, Applying UML and Patterns, Prentice Hall,
2004
Chapter 16+17+22 introduce GRASP

82 Einfihrung in die Softwaretechnik

Using the Template Method Pattern for Bubble-Sort

BubbleSorter
abstract

| IntBubbleSorter | | DoubleBubbleSorter |

public abstract class BubbleSorter ({

protected int length = 0;

protected void sort() {
if (length <= 1) return;

if (outOfOrder (index))
swap (index) ;

for (int nextTolast = length - 2; nextTolast >= 0; nextTolLast--)
for (int index = 0; index <= nextTolast; index++)

Policy

protected abstract void swap(int index) ;
protected abstract boolean outOfOrder (int index) ;

Mechanisms

83 Einfihrung in die Softwaretechnik

. ===
Filling the Template for Specific Sorting Algorithms

public class IntBubbleSorter extends BubbleSorter ({
private int[] array = null;

public void sort(int[] theArray) {
array = theArray;
length = array.length;
super.sort() ;

}

protected void swap(int index) ({

Mechanisms

int temp = array[index];
array[index] = array[index + 1];
array[index + 1] = temp;

}

protected boolean outOfOrder (int index) ({
return array[index] > array[index + 1];

84

Consequences

» Template method forces detailed implementations to
extend the template class.

» Detailed implementation depend on the template.

» Cannot re-use detailed implementations’ functionality.
(E.g., swap and out-of-order are generally useful.)

» If we want to re-use the handling of integer arrays with
other sorting strategies we must remove the dependency
this leads us to the Strategy Pattern.

85 Einfihrung in die Softwaretechnik

