
System F-omega with Equirecursive
Types for Datatype-generic Programming

Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann

University of Tübingen, Germany

December 8, 2015

Traversing an algebraic datatype by hand requires boilerplate code which
duplicates the structure of the datatype. Datatype-generic programming
(DGP) aims to eliminate such boilerplate code by decomposing algebraic
datatypes into type constructor applications from which generic traversals can
be synthesized. However, different traversals require different decompositions,
which yield isomorphic but unequal types. This hinders the interoperability
of different DGP techniques.

In this paper, we propose Fµω , an extension of the higher-order polymorphic
lambda calculus Fω with records, variants, and equirecursive types. We prove
the soundness of the type system, and show that type checking for first-order
recursive types is decidable with a practical type checking algorithm. In our
soundness proof we define type equality by interpreting types as infinitary λ-
terms (in particular, Berarducci-trees). To decide type equality we β-normalize
types, and then use an extension of equivalence checking for usual equirecursive
types.
Thanks to equirecursive types, new decompositions for a datatype can be

added modularly and still inter-operate with each other, allowing multiple
DGP techniques to work together. We sketch how generic traversals can be
synthesized, and apply these components to some examples.
Since the set of datatype decomposition becomes extensible, System Fµω

enables using DGP techniques incrementally, instead of planning for them
up-front or doing invasive refactoring.

The main body of this document is a version of the paper of the same
title in Symposium on Principles of Programming Languages 2016 [15]. The
appendices are new. They supply the soundness and decidability proofs and
go into greater detail about the generation of traversable functors.

1

Contents

1. Introduction 3

2. Overview 4
2.1. The Problems . 6
2.2. Our Approach . 6
2.3. Infinitary Type Equivalence . 7
2.4. DGP in Our Approach . 8

3. Related Work 9
3.1. Synthesizing Isomorphisms . 9
3.2. Monomorphization . 10
3.3. Universe Construction . 10
3.4. Other Systems with Equirecursive Types 11

3.4.1. Equirecursive Simple Types . 11
3.4.2. Equirecursive F Types . 11
3.4.3. Equirecursive K3 Types . 13
3.4.4. OCaml-style Equirecursive Types 14
3.4.5. Equirecursive Fω Types . 14

4. System Fµω 15

5. Soundness and Type Checking of Fµω 19
5.1. Type Equivalence, Informally . 19

5.1.1. Equirecursive Simple Types . 19
5.1.2. Extending Equirecursive Types to System Fµω 19

5.2. Type Soundness . 20
5.2.1. Type Equivalence and Type-level Confluence 21
5.2.2. Evaluation, Preservation and Progress 25

5.3. Decidability of Type Checking First-order Recursive Types 26
5.3.1. Deciding Type Equivalence . 26
5.3.2. Discovering Type Arguments for Type-level Constants 30

6. From Type Functions to Traversable Functors 31

7. Future Work 33

8. Conclusion 33

A. Basic Properties of Böhm-reduction 34

B. Type Soundness of Fµω 37
B.1. Preservation . 37
B.2. Progress . 41

2

C. Algorithmic Typing Rules 42

D. Decidability of Type Equivalence on Fµ∗ω 44
D.1. Commuting Diagram Lemma . 45

D.1.1. Infinite Expansion Preserves Substitution 45
D.1.2. Infinite Expansion Preserves Normal Forms 47
D.1.3. Eliminating µ . 49
D.1.4. Infinite Expansion Preserves Böhm Reduction 50

D.2. µ-Expansion Lemma . 51
D.3. Type Argument Discovery . 53
D.4. Type Equivalence Verification Algorithm 54
D.5. Fµ∗ω Types Have Regular Berarducci Trees 59

E. Polytypism with Relevance Tracking 60
E.1. Motivation . 60
E.2. Polykinded Types and Polytypic Terms 61
E.3. Generating Traversable Functors . 65
E.4. Discussion . 65

F. Digression: Coinduction on Sets and Terms 66
F.1. Coinduction on Sets . 67
F.2. Recursively Defined Infinitary Terms and Böhm Reduction 69
F.3. Alternative Proof of a Step in the Commuting Diagram Lemma 72

1. Introduction

Programs operating on algebraic data types are often repetitive and fragile. Such
programs typically depends on details of the data structure that are irrelevant to the
purpose of the program, hence datatype definitions and recursion schemes are redundantly
duplicated many times. Research on datatype-generic programming strives to abstract
code duplicated across a data structure definition and its consumers into reusable form,
hence separating the concerns of traversing the data structure recursively and of handling
each case appropriately [26, 25].
But to this end, each technique for datatype-generic programming decomposes a

datatype in a different way. Different decompositions do not inter-operate well because
they create incompatible datatypes. For instance, we can refactor a consumer of algebraic
data into a fold, after replacing the datatype T with the fixed point of a functor F , that is,
T1 = µ F . Other techniques require different incompatible datatype refactorings, replacing
T with a different T2. In general, even if all these decompositions are isomorphic, that is,
T1
∼= T ∼= T2, a typechecker will not recognize them as equivalent and will prevent the

programmer from making use of different decompositions at the same time. A programmer
could manually define and use the isomorphisms between these datatypes, but this would
be another elaborate and error-prone source of redundancy.
We argue that this problem can be fixed in a language which is on the one hand

3

powerful enough to express datatype-generic programming techniques—System Fω—and
on the other hand supports interoperability between different datatype decompositions
by equirecursive types. Equirecursive types—as opposed to isorecursive types—aim to
make many isomorphic datatypes equal. For instance, a recursive type µ F is equal to its
unfolding F (µ F). Systems supporting equirecursive types have been studied, but they
either lack known practical typechecking algorithms, or do not provide support for type
constructors, which is required for datatype-generic programming. Hence, in this paper
we fill this gap.

More specifically, we make the following contributions.

• We formally define System Fµω , an extension of System Fω with equirecursive
datatypes (Sec. 4).

• We define and study the coinductive equational theory of Fµω types, based on the
theory of infinitary λ-calculus. Using this theory, we prove type soundness for Fµω
(Sec. 5.2).

• We show that Fµ∗ω , that is Fµω restricted to first-order recursive types, enjoys
decidable typechecking (Sec. 5.3) but is still expressive enough to support DGP
(Sec. 2.2).

• To further support DGP, we automate the generation of traversal schemes from
type constructors corresponding to traversable functors (Sec. 2.4 and Sec. 6).

The rest of the paper is structured as follows. Sec. 2 motivates Fµω and gives a high-level
overview. Sec. 3 discusses related work on DGP and equirecursive types. Sec. 4 formalizes
the static semantics of Fµω . Sec. 5 discusses the soundness of Fµω and the decidability
of typechecking in Fµ∗ω . Sec. 6 is about boilerplate generation. Sec. 7 lists future work.
Sec. 8 concludes.
Material added in this extended version appears in appendices. We will point to it

throughout the text.

2. Overview

In conventional functional programming with algebraic datatypes and pattern matching,
functions that operate on algebraic data types are tightly coupled to the details of the
datatype. For instance, consider a Haskell function to compute the free variables of a
lambda term with integer literals.

data Term = Lit Int | Abs String Term
| Var String | App Term Term

fv :: Term → Set String
fv (Lit n) = empty
fv (Var x) = singleton x
fv (Abs x t) = delete x (fv t)
fv (App t1 t2) = union (fv t1) (fv t2)

4

The definition of fv combines the logic to compute free variables with the boilerplate
to perform a traversal, and some more boilerplate to merge results collected across the
traversal.
However, the traversal boilerplate can be derived from the datatype description: it is

sufficient to rewrite the algebraic datatype Term as the least fixed point of its pattern
functor TermF :

data TermF t = Lit ′ Int | Abs ′ String t
| Var ′ String | App′ t t

type Term ′ = Fix TermF

newtype Fix f = Roll {unroll :: f (Fix f)}

Using TermF , one can now use standard DGP techniques to decouple the free variables
algorithm from the structure of the datatype. One can mechanically and automatically
derive a definition of the fmap function, and based on the fmap function one can define
generic traversals such as catamorphisms (that abstract over structural recursion) or
even a generic traverse function [39] with which one can, say, accumulate the contents of
algebraic data (using any monoid for combination) in a highly generic way.

Term and Term ′ are obviously isomorphic, but not equal.
Decomposing Term into Fix and TermF is not the only option, though; many different

decompositions are useful and sensible. For instance, consider call-by-name β-reduction.
TermF is not an adequate representation of the recursion structure of this algorithm,
since the latter only recurses into the left hand side of an App constructor, but not the
right hand side.

The recursion structure of this algorithm is captured by additionally defining Term ′′ as
the fixed point of EvalCtx . Again, Term ′′ is isomorphic to both Term and Term ′, but
not equal.

data EvalCtx t = Lit ′′ Int | Abs ′′ String Term
| Var ′′ String | App′′ t Term

type Term ′′ = Fix EvalCtx

Many other functors are possible. Each functor defines a particular view on a datatype.
For instance, we can additionally define a type equivalent to Term via a functor that
focuses on the variable names.

data VarTerm t = Lit ′′′ Int | Abs ′′′ String Term
| Var ′′′ t | App′′′ Term Term

type Term ′′′ = VarTerm String

Such functors are common when defining lenses [36] of a datatype. In general, a
datatype with n fields is associated to 2n functors, 3n bifunctors, 4n trifunctors, etc, that
is, a super-exponential amount of functors.
The datatypes defined via these functors are isomorphic but not equal, which means

that programmers have to choose a dominant functor ahead of time, and DGP techniques

5

are only directly available for the dominant functor — in other words, we have a tyranny
of the dominant functor (analogous to the tyranny of the dominant decomposition [52]).
For other decompositions, the programmer would have to manually define and apply
the isomorphisms, which is elaborate and error-prone, especially because the number of
isomorphisms grows quadratically with the number of functors.

2.1. The Problems

In our example, values of different datatypes are incompatible, first, because different
datatypes cannot share data constructors—for instance, Lit ′′ constructs Term ′′, not
Term ′. This problem can be addressed via polymorphic variants [23] or structural typing.

With polymorphic variants, we next run against isorecursive types. A Term is not
equal to a record that can contain other terms, is only isomorphic to it, and data must
be explicitly converted across isomorphic datatypes. Outside of DGP, this is a smaller
problem because such isomorphisms are part of data constructors. But when using
multiple decompositions, users need to combine multiple of these coercions, especially to
convert between datatypes with different recursive structure like Term ′ and Term ′′.

Similarly to some previous work (discussed in Sec. 3.1), we prototyped a Scala library
which (a) encoded polymorphic variants and (b) automatically generated coercions between
isomorphic datatypes using equal labels, relying on Amadio and Cardelli’s algorithm
to generate coercions [4, 12]. Thus, users need not write boilerplate converting among
Term, Term ′, Term ′′ and Term ′′′; more in general, we could generate conversion between
datatype decompositions used in different DGP techniques [13, 25, 40, 41]. Yet, the
resulting system was not satisfactory: these coercions had a runtime cost that in some
cases was hard to remove. More importantly, users had to constantly invoke coercions
by hand at the right point, or confront errors for type mismatches between morally
identical types. We decided therefore that, instead of bending over backwards to please a
typechecker, the typechecker should take pains to help its users by recognizing more type
equivalences, as we describe next.

2.2. Our Approach

We address the problem described above by a novel typed λ-calculus. Our starting point
is the higher-order polymorphic λ-calculus Fω because we need type-level functions to
express functors. To Fω we add record and variant types and, crucially, equirecursive
types, through a type-level fixed-point combinator µk :: (k → k) → k . In the novel
resulting calculus, Fµω , the Term ′ datatype and the TermF functor look as follows:

type TermF =
λτ. 〈Lit : {n : Int }, Abs : {x : String , body : τ },

Var : {x : String },App : {fun : τ, arg : τ } 〉
type Term ′ = µ TermF
type Term = Term ′

6

The functor is defined as type-level function; its fixed point yields Term ′. We don’t have
a distinct construct for datatype definition, so we simply declare that Term is equal to
Term ′.

We can define Term ′′ and Term ′′′ in the same way.

type EvalCtx =
λτ. 〈Lit : {n : Int }, Abs : {x : String , body : Term },

Var : {x : String },App : {fun : τ, arg : Term } 〉
type Term ′′ = µ EvalCtx

type VarTerm =
λτ. 〈Lit : {n : Int },Abs : {x : String , body : Term },

Var : {x : τ }, App : {fun : Term, arg : Term }〉
type Term ′′′ = VarTerm String

Alternatively, to avoid redundancy we can freely refactor all these type constructors
expressing them in terms of TermBase:

type TermBase =
λρ σ τ. 〈Lit : {n : Int },Abs : {x : String , body : σ},

Var : {x : ρ}, App : {fun : τ, arg : σ} 〉
type TermF = λτ :: ∗. TermBase String τ τ
type Term ′ = µ TermF
type Term = Term ′

type EvalCtx = λτ :: ∗. TermBase String Term τ
type VarTerm = λτ :: ∗. TermBase τ Term Term

2.3. Infinitary Type Equivalence

In Fµω , Term ′, Term ′′ and Term ′′′ are equal thanks to a powerful type equivalence relation
based on infinitary λ-terms. Intuitively, we identify each recursive datatype µ F with its
infinite expansion F (F (F ...)). Hence two datatypes are equal if their infinite expansions
have the same variant-record structure and the same field types. This type equivalence
extends the one developed by Amadio and Cardelli [4] that we used in our prototype
(Sec. 2.1).1 We are hence confident enough that, thanks to this type equivalence, different
DGP techniques can inter-operate.
Instead of defining type equivalence through infinite structures and a type-equality

relation formulated coinductively, it is metatheoretically simpler to extend type equality
with the µ-unfolding rule µ F = F (µ F), interpreted inductively as usual. The resulting

1In Fµω , we use the extended Amadio-Cardelli algorithm to check type equivalence for equirecursive types;
in our prototype, we used the same equivalence to recognize when two types would be isomorphic and
synthesize a coercion between them.

7

weak type equality [16, 11] is however strictly weaker [16] and insufficient for our goals. As
a minimal example, weak type equality cannot prove the following equations [16, 4, 1]:

µ α. α→ Int = µ α. (α→ Int)→ Int (1)
µ α. µ β. α→ β = µ α. α→ α (2)

Intuitively, the µ-unfolding rule does not alter the argument of µ, and the two sides of
Eq. (1) differ exactly by the different arguments of µ, which no amount of unfolding
will equalize.2 Weak equivalence is sufficient to prove Term ′ = Term ′′′, but, crucially,
Term ′ = Term ′′ requires infinite unfolding, because any finite amount of unfolding is
insufficient to equate the different recursion structures. Hence we conclude that we
need strong type equality, defined through infinite unfolding, for DGP with multiple
simultaneous datatype decompositions.

2.4. DGP in Our Approach

After defining strong type equivalence, we can apply standard DGP techniques. For
instance, fv is just a fold, and folds can be defined generically. To wit, compare the
Haskell definition with the Fµω version.

-- Haskell
fold :: (Functor f)⇒ (f a → a)→ Fix f → a
fold algebra = fix (λdoFold v →

algebra (fmap doFold (unroll v)))

-- System Fµω
type Functor f = ∀a b. (a → b)→ (f a → f b)

fold : ∀f . (Functor f)→ ∀a. (f a → a)→ µ f → a
fold = Λ f :: ∗ → ∗. λfmap : Functor f .

Λ a :: ∗. λalgebra : f a → a.
fix (λdoFold : µ f → a.

λv : µ f .algebra (fmap doFold v))

Ignoring superficial differences, in Fµω we omit invoking the isomorphism unroll , since the
typechecker knows that µ f = f (µ f).
Each of the code above is generic, but depends on an implementation of fmap for

the relevant functor. Since this implementation is purely boilerplate, in GHC Haskell
the programmer can ask the compiler to implement fmap through a deriving Functor
clause. Similarly, an automatic implementation of the more general method Traverse

2Technically, this weakness is usually shown in settings without type constructors. We conjecture weak
equality is still “too weak” even in combination with the β-rule, at least in Fµ∗ω since its types still
expand to regular trees like for λµ, and unlike with type-level recursion at K3 kinds. This conjecture
is non-trivial to prove because of the possibility of µ-unfolding in proofs of weak equality, but our
attempts yielded no counterexample.

8

can be requested deriving Traversable.3 To provide comparable support, we support
traversable functors of arbitrary kinds through a boilerplate-generation mechanism for
Fµω , based on an extension of higher-kinded polytypism [29] (Sec. 6). In our prototype
(Sec. 2.1), we found support for traverse sufficient to encode a variety of DGP techniques
[13, 25, 40, 41].

In the rest of the paper, we demonstrate type soundness for Fµω , and the decidability of
type checking for a the subset Fµ∗ω , where µ is restricted to µ∗, so that it is only applicable
to type-level functions of kind ∗ → ∗ and can thus only express first-order recursive
types. This fragment is expressive enough to express all of our examples and the DGP
techniques previously mentioned, but not to support nested datatypes (see Sec. 3.4.3).
Further extensions to the decidability result appears difficult; a practical system with
higher-kinded equirecursive types may require more hints regarding type equivalence from
the user.

3. Related Work

We separate related work into three classes: (1) Approaches to synthesize datatype
isomorphisms, (2) monomorphization, a technique to avoid the need for isomorphisms, (3)
universe construction, the standard generic programming pattern in dependently typed
languages, and (4) previous work on equirecursive types.

3.1. Synthesizing Isomorphisms

There are many approaches that try to avoid the boilerplate code that implements certain
datatype isomorphisms. Many approaches to datatype genericity are based on the idea
of a structural sums-of-products representation of datatypes. Such isomorphisms can be
synthesized in Generic Haskell [5]. Recent work in this area has concentrated on a unique
sum-of-products representation without nesting [19]. Such isomorphisms are not in the
scope of this work; our approach is “nominal”: names of labels matter and datatypes with
different label names are never equal.
A generic view [30, 47] on a datatype T is another type T ′ together with coercions

between T and T ′. Generic views can be used to add a new datatype decomposition
(and the corresponding isomorphisms) to a datatype, which makes it simpler to define
generic functions that require a different view on the data. One supported view is the
fixed point view, with which the pattern functor can be recovered from a datatype. More
sophisticated isomorphisms involving fixed points, such as different functors with the
same fixed points, are not supported.
The main difference of this work to all approaches to synthesize isomorphisms is that

we strive for a powerful type equality relation which makes it unnecessary to define and
apply isomorphisms.

3Its design is described at http://ghc.haskell.org/trac/ghc/ticket/2953.

9

http://ghc.haskell.org/trac/ghc/ticket/2953

3.2. Monomorphization

Monomorphization refers to the process of instantiating a polymorphic value. In the
functor decomposition of datatypes, monomorphization means instantiating functor
methods like fmap so that its type signature refers only to the original datatype, sparing
us the need to create a fresh datatype for the functor. As an example, consider the fmap
method of TermF .

fmap :: (a → b)→ TermF a → TermF b

Note that Term is isomorphic to (TermF Term). To get rid of the new datatype TermF
in the signature of fmap, we set a = b = Term, and replace TermF a and TermF b
by Term. The result is a computationally equivalent fmap definable in terms of the
constructors of Term alone. The process is analogous for fold .

fmap :: (Term → Term)→ Term → Term
fmap f (Lit n) = Lit n
fmap f (Var x) = Var x
fmap f (Abs x t) = Abs x (f t)
fmap f (App t1 t2) = App (f t1) (f t2)

fold :: (Term → Term)→ Term → Term
fold f t = f (fmap (fold f) t)

Monomorphization is a technique that shows up in several approaches to generic
programming, including the lens library [36], Compos [13], and Scrap-your-boilerplate [38].
Monomorphization avoids the need for isomorphisms, since the monomorphized func-

tions operate on the original algebraic datatype. However, the expressiveness of monomor-
phized functions is rather limited compared to the polymorphic versions. For instance,
the fold above supports only recursive term transformations; it does not support the
computations of free variables any more. Moreover, through monomorphizing the type
signature of fmap and fold , the free theorems of their types no longer dictate their behav-
iors. In fact, these two very different methods have the same type signature. Nothing
warns the user if it calls fmap with an algebra by mistake. Similarly, the methods of
different functors may not be distinguished by type, risking unintentional misuse.
Furthermore, while monomorphization allows the decomposition of a single datatype

into multiple functors (with the limitations described above), it does not allow using the
same functor for the definition of multiple datatypes.

3.3. Universe Construction

In many dependently-typed languages, universe constructions [3, 6, 42, 43] allow defining
a datatype of codes for a class C of types. Functions can be defined over every type τ ∈ C
by pattern-matching on the code of τ ; boilerplate-generators such as fmap (Sec. 2.4)
or traverse (Sec. 6) are definable thus without any special language support. Universe
constructions are a promising direction of generic programming and has received much

10

attention in literature. However, the tyranny of the dominant functor—or the inflexibility
of induction principles—persist in the presence of dependent types. Tackling them there
would mean confronting the difficulties of coinductive reasoning inside a dependently
typed language, difficulties yet to be resolved. Instead, we present dominant functors in
the simplest system we could find, that is Fµω .

3.4. Other Systems with Equirecursive Types

We survey recent systems with equirecursive types; these systems consider a recursive
type and their expansions to be interchangeable in all contexts. While some such works
discuss subtyping, we will look at them from the simpler perspective of type equivalence,
which is sufficient for our purposes. We refer to Brandt and Henglein [12] for earlier work
on equirecursive types.

Compared to the surveyed systems, our soundness result holds for the most general class
of equirecursive Fω types with a more liberal equivalence relation than those previously
investigated. Our decidability result holds for Fω types with first-order recursion, which
corresponds to equirecursive F types sprinkled with type-level lambdas and applications.

3.4.1. Equirecursive Simple Types

Amadio and Cardelli [4], Brandt and Henglein [12] and Gapeyev et al. [22] (also in
Pierce [45, Ch. 21]) investigated the system of recursive simple types, here indicated with
λµ, shown in Fig. 1. Two recursive simple types are equivalent if and only if unrolling
them indefinitely produce identical infinite trees. The same type equivalence can also be
formulated without infinite unfoldings, using instead the rules of µ-folding interpreted
coinductively, (see Fig. 1). This formulation is syntax-directed (technically, invertible), so
it can be decided efficiently using a general decision procedure for coinductive relations.
Both our type equivalence and decision procedure extend this theory, as we discuss in
Sec. 5.2.1 and 5.3.1.
Recursive simple types differ from Fµω types, because:

1. There is no type-level function, or any type-level computation beyond unrolling
µ-types.

2. The µ-types are constrained syntactically to be contractive; those types that do not
unfold to infinite trees are forbidden (e. g., µα. α), for reasons we discuss later.

Despite these differences, a significant part of the metatheory of recursive simple types can
be reused for Fµω . In fact, our proof is based on the presentation in Pierce [45]. However,
while we still use the idea of infinite expansion, because of type-level computation its
definition must be changed to use infinitary λ-calculus.

3.4.2. Equirecursive F Types

Glew [28] considered adding recursive types to System F . Recursive F types extend

11

τ c ::= simple contractive type
ι primitive type

| τ s → τ s function type
| µx. τ c µ-type

τ s ::= simple recursive type
α type variable

| τ c

α ≡ α
(Eq-TVar)

ι ≡ ι
(Eq-Prim)

[x 7→ µx. τ c]τ c ≡ τ s

µx. τ c ≡ τ s
(Eq-µL-Simple)

τ s ≡ [x 7→ µ x. τ c]τ c τ s does not start with µ
τ s ≡ µx. τ c

(Eq-µR-Simple)

τ s1 ≡ τ s2 τ s3 ≡ τ s4
τ s1 → τ s3 ≡ τ s2 → τ s4

(Eq→)

Figure 1: The system of simple recursive types investigated in Amadio and Cardelli
[4], Brandt and Henglein [12], Pierce [45], with type equivalence formulated
coinductively, through congruence rules and rules for µ-folding. This formulation
ensures rules are non-overlapping and thus syntax-directed.

12

recursive simple types as follows:

τ s = . . . | ∀α. τ s, τ c = . . . | ∀α. τ s.

In other words, universal quantification is added as another way to construct contractive
types. Like simple types, recursive F types exclude type-level functions, type-level
computation and non-contractive µ-types.
Glew interprets recursive F types as binding trees, or infinite F types in de Bruijn

notation. De Bruijn indices are used to avoid the issue of name binding and α-equivalence.
Name binding is present in Fµω as well, namely in type-level lambdas. Following Czajka
[18], we ignore the name binding issue, since standard solutions exist. Glew gave an O(n2)
decision procedure for the equivalence of recursive F types, where n bounds the size of
the types. Gauthier and Pottier [24] improve the algorithm to O(n log n) and generalized
it to decide unifiability, so that languages with type inference (e. g., OCaml) may take
advantage of recursive F types.
Colazzo and Ghelli [17] added recursive types to System F<:. The result is similar

to recursive F types, except universal quantifications may include subtype bounds:
∀α <: τ1. τ2. Colazzo and Ghelli defined a decidable subtyping relation on recursive F<:

types that relates µ-types and their expansions in all contexts, but they gave no infinitary
interpretation.

3.4.3. Equirecursive K3 Types

In modern terms, Solomon [50] considered recursive types that can have parameters of
kind ∗, that is, recursive types of K3 kinds [45, definition 30.4.1]. As discovered later,
this allows expressing nested datatypes [10] such as perfect binary trees:

data Tree a = One a | Two (Tree (a, a))

In Fµω , Tree would be the fixed point of a higher-order type:

µ (λTree : ∗ → ∗.
λa : ∗. 〈One : α,Two : Tree {fst : α, snd : α}〉)

Solomon’s types are defined by series of potentially recursive type synonyms with param-
eters and constructed by records, pointers and base types of kind ∗. Despite the lack of
explicit lambdas, type-level computation is expressible through types calling each other
in the bodies of their definitions.

Solomon showed that equivalence checking for equirecursive K3 types reduces to equiva-
lence checking for deterministic push-down automata, which Sénizergues proved later to be
decidable [48]. Thus equirecursive typing is decidable for nested datatypes. Unfortunately,
known algorithms to decide equivalence of deterministic push-down automata [32] are
impractical because they have super-exponential time complexity in automaton size (in
particular, the algorithms are primitive recursive, but their complexity is not elementary
in the automaton size [33, 51]).

13

Fµω supports fixed points of arbitrary kinds, but the decidable subset Fµ∗ω only supports
recursion for proper types (i.e., only allows using µ where κ = ∗), so types still expand to
regular trees (see Sec. 5.3). We conjecture that, like for λµ, the type equivalence problem
for Fµ∗ω is still reducible to equivalence of regular languages, while for equirecursion at
K3 kinds goes significantly beyond regular languages; this would explain why supporting
equirecursion at K3 kinds is so much harder. So we exclude recursive K3 types because
of these disproportionate metatheoretic difficulties, and because they are just a small
fragment of higher-kinded types.

3.4.4. OCaml-style Equirecursive Types

Im et al. [32] considered λrec
abs, a system with recursive K3 types, OCaml-style modules

and abstract types. They define a term language in addition to the type language and
demonstrate type soundness despite the interaction between recursive and abstract types.
Although no practical algorithm exists to decide the equivalence of K3 types, Im et al.’s
soundness result also applies to efficiently decidable fragments of λrec

abs. We share their
concern for type soundness and follow a similar framework: Our type checking algorithm
works only on recursive types of kind ∗, but our soundness result applies to Fω with
recursive types of arbitrary kinds.
The distinguishing feature of λrec

abs is that non-contractive types (i. e., types that do
not expand to infinite trees) are not completely forbidden. In fact, abstract types make
it impossible to rule out non-contractive types syntactically; instantiating an abstract
type may make other types non-contractive. For example, instantiating f by the identity
type function produces the non-contractive type µ (λα. α) in the type signature of fold
(Sec. 4). This problem is present in both λrec

abs and Fµω . In λrec
abs, infinite proofs relating

non-contractive types to every other type are forbidden by construction. In Fµω , type
equivalence is defined in terms of β-equivalence in infinitary λ-calculus, enabling us to
reuse existing confluence and normalization results in our soundness proof.

3.4.5. Equirecursive Fω Types

System Fω with equirecursive types (and sometimes subtyping) has been considered in
several papers. Bruce et al. [14] presented the syntax of a variant of Fω with subtyping,
recursive types, and some other features, but do not consider its metatheory. Hinze [29]
considered a variant of Fµω , but uses the weak type equivalence we discuss in Sec. 2.2,
and does not discuss soundness or decidability. Abel [2] also considered a variant of Fµω
and did discuss its metatheory (without decidability of typechecking), but like Hinze he
used weak type equivalence, which has a simpler metatheory. Abel’s focus is however
unrelated from ours (namely, automatic proofs of termination using sized types).

We will prove type soundness for Fω with equirecursive types, but we will only describe
an efficient typechecker for a sub-language, where recursive types may only have kind ∗.
With recursive types of arbitrary kinds, equivalence between Fω types corresponds to a
form of coinductive program equivalence between simply typed λ-terms with a general
fixed-point combinator.

14

K3 types are a subset of general Fµω types, and for the latter it is not known whether a
sensible, decidable equivalence relation exists [20, section 3.4].

4. System F µ
ω

In this section, we define the formal language we propose to support datatype-generic
programming (as discussed in Sec. 2). The type signature of fold , which we have seen in
Sec. 2.2, dictates which language features are necessary:

fold : ∀f . (Functor f)→ ∀a. (f a → a)→ µ f → a

The signature of fold uses:

• a type-level function f and type-level application f a,

• universally quantified type variables f , a,

• recursive types, that is, fixed points µ f of arbitrary type functions f . As discussed,
we want equirecursive types.

Therefore, we have designed System Fµω combining all 3 features. Fig. 3 to 6 show its
syntax, type and kind systems.
In our formal language Fµω , datatype operations are expressed through records and

variants, that are eliminated respectively through projections (Fig. 6, rule T-Proj) and
pattern matching (rule T-Case). The language of types of Fµω is a simply-typed λ-calculus
Λµ, but shifted one level up, just like for Fω. Instead of introducing type constructors
(for instance → for function types or ∀ for universal types), we introduce corresponding
primitives (Fig. 2). Equirecursive types deserve attention. While we prove type soundness
for the language as presented, we can only prove that type checking is decidable for Fµ∗ω ,
where we restrict to recursive types of kind ∗, that is, if we restrict µ (Fig. 4) to the case
κ = ∗, as discussed in Sec. 3.4.

The typing rule T-Eq (Fig. 6) relies on a notion of type equivalence; we will define it
in Sec. 5.
In Fµω , labels in records and variants are always written in a canonical (alphabetical)

order; we will ignore this rule in examples, because label ordering can be canonicalized
during desugaring.

{x = 3, body = 5} ::= {body = 5, x = 3}

We formalize the universal quantifier as a collection of type-level constants ∀κ indexed
by the kind of the type being quantified over. This way, the universal quantifier is treated
simply as yet another type-level constant. It is easy to see that our formulation of ∀ as
a constant is inter-derivable with the standard formulation of ∀α :: κ. τ as a syntactic
construct [45, fig. 30-1]. When there is no confusion, we will omit the kind index of ∀κ
and just write ∀.

15

ι ::= Λµ constant
→ :: ∗ → ∗ → ∗ function arrow

| ∀κ :: (κ→ ∗)→ ∗ universal quantifier

| {li} :: ∗ → ∗ record type constructor

| 〈li〉 :: ∗ → ∗ variant type constructor
| ι0 Int, Set, String etc.

Labels in record/variant types must formally appear in lexico-
graphic order. This way, types cannot differ only by the order
of labels. We shall employ the following syntax sugar:

{li : τi} = {li} τ1 · · · τn
〈li : τi〉 = 〈li〉 τ1 · · · τn

Figure 2: Λµ constants, the type-level language of Fµω , together with their kinds.

κ ::= kind
∗ kind of types

| κ→ κ kind of type constructors

τ ::= type (constructor)
µ τ recursive type
ι type-level constant

| α type-level variable
| λα :: κ. τ type-level abstraction
| τ τ type-level application

Γ ::= typing context
∅ empty context

| Γ, α :: κ type variable binding
| Γ, x : τ term variable binding

Figure 3: Syntax of Λµ, the type-level language of Fµω .

16

Γ ` τ :: κ→ κ

Γ ` µ τ :: κ
(K-Fix)

Γ, α :: κ1 ` τ :: κ2

Γ ` λα :: κ1. τ :: κ1 → κ2
(K-Abs)

Γ ` τ1 :: κ2 → κ3 Γ ` τ2 :: κ2

Γ ` τ1 τ2 :: κ3
(K-App)

α :: κ ∈ Γ

Γ ` α :: κ
(K-Var)

Γ ` ι :: κι
(K-Const)

Figure 4: Kinding rules. Kinds κι for ι =→, ∀, {li} and 〈li〉 are given next to their syntax
definitions (Fig. 2).

t ::= term
c constant

| x variable
| λx : τ. t abstraction
| t t application
| Λα :: κ. t type abstraction
| t [τ] type application

| {li = ti} record introduction
| t.li record elimination (projection)
| 〈lj = t〉 as τ variant introduction (injection)
| case t of t variant elimination

c ::= constant
fix τ : (τ → τ)→ τ fixed-point combinator

| · · · literals, arithmetic operators, etc.

Figure 5: Syntax of terms of Fµω .

17

Γ ` τc : ∗
Γ ` c : τc

(T-Const)

x : τ ∈ Γ

Γ ` x : τ
(T-Var)

Γ, x : σ ` t : τ Γ ` σ :: ∗
Γ ` (λx : σ. t) : σ → τ

(T-Abs)

Γ ` t : σ → τ Γ ` s : σ

Γ ` t s : τ
(T-App)

Γ, α :: κ ` t : τ

Γ ` (Λα :: κ. t) : ∀κ (λα :: κ. τ)
(T-TAbs)

Γ ` t : ∀κ τ Γ ` σ :: κ

Γ ` t [σ] : τ σ
(T-TApp)

Γ ` ti : τi

Γ ` {li = ti} : {li : τi}
(T-Record)

Γ ` t : {li : τi}
Γ ` t.lj : τj

(T-Proj)

Γ ` t : τj Γ ` τ :: ∗ τ ≡ 〈li : τi〉
Γ ` 〈lj = t〉 as τ : τ

(T-Variant)

Γ ` t : 〈li : τi〉 Γ ` s : {li : τi → τ}
Γ ` case t of s : τ

(T-Case)

Γ ` t : σ Γ ` τ :: ∗ σ ≡ τ
Γ ` t : τ

(T-Eq)

Figure 6: Typing rules of Fµω . In T-Const with c = fix we have τc = τ → τ for arbitrary
types τ .

18

5. Soundness and Type Checking of F µ
ω

In this section, we discuss the metatheory of Fµω , focusing on the more interesting parts.
We are interested in proving both type soundness (through progress and preservation) for
Fµω and decidable typechecking for Fµ∗ω . The typing rules of Fµω are the same standard as
for Fω; but the interesting changes are in the type equality relation, since we combine
both β-equivalence (λx.t1)t2 ≡ [x 7→ t2]t1 and equirecursive types µ f ≡ f (µ f). Hence,
we need to combine the metatheory of System Fω and of equirecursive types, in particular
their theories of type equivalence.

5.1. Type Equivalence, Informally

In this subsection, we discuss informally type equivalence in Fµω .

5.1.1. Equirecursive Simple Types

Before studying the interaction between equirecursive types and β-equivalence, we reca-
pitulate key insights on equirecursive type equivalence on simple types alone (Sec. 3.4.1).
Type equivalence ensures that µ-types are equal to their unfolding; that is, it satisfies the
µ-unfolding equation µα.τ = τ [α := µα.τ]. However, as discussed (Sec. 2.3), µ-unfolding
induces a weak type equivalence, which is insufficient to prove some equations, such as
Eq. (1):

µα.α→ Int = µα.(α→ Int)→ Int .

Intuitively, proving this equation through µ-unfolding would require an infinite number of
unfolding steps. To allow proving Eq. (1), one can define formally the infinite unfolding
τ∞ of a type τ ; unfolding τ infinitely often allows us to eliminate all occurrences of µ
from τ∞. Two types are then (strongly) equivalent if their infinite unfoldings are equal.
Strong equivalence proves Eq. (1) because both sides unfold to

((. . .→ Int)→ Int)→ Int .

However, we can’t define the infinite unfolding for types such as µα.α, which are called
non-contractive µ-types — intuitively, since each unfolding step returns the same term,
the unfolding process that should construct the tree achieves no progress.4 Without
special care, non-contractive types can be proved equal to all other types [32], which is
undesirable. Therefore, we must either treat them specially or forbid them altogether.
In λµ, non-contractive types are excluded from the syntax of types: They have form
. . . (µα.µα1 . . . µαn.α) . . . for n ∈ N, which is illegal in the grammar in Fig. 1.

5.1.2. Extending Equirecursive Types to System Fµω

To add equirecursive types to Fµω , we need to extend infinite expansion to type abstractions
and applications, and handle non-contractive types in a different way.

4In programming terms, the unfolding process is not productive [12].

19

First, we extend the infinite unfolding to Fµω ’s types. The type level of System Fω
is a simply-typed λ-calculus, to which we add the fixed-point combinator µ; hence, the
infinite unfolding process will produce terms of an infinitary λ-calculus. For technical
reasons, we use untyped infinitary λ-calculus: Fω’s soundness proof requires a confluent
reduction relation for types, and to the best of our knowledge no suitable one has been
studied for infinitary simply-typed λ-calculus. Hence, infinite expansion also performs
type erasure. Among the available formulations, we adopt the one by Endrullis and
Polonsky [21] because it is coinductive and thus more perspicuous and convenient. We
rely on the confluence proof by Czajka [18]; some proof steps in appendices are based on
the earlier treatment by Kennaway et al. [35].
To expand µf even when f is not a variable, unlike in λµ, µ expands to a function

µ∞ = λf.f (f (f · · ·)), which iterates its argument an infinite number of times. To
complete the unfolding process, first f must reduce to a λ-abstraction, and then β-
reduction will complete the unfolding.

In Fµω we must regard non-contractive types as syntactically valid, because they can be
created during β-reduction. For instance, µ f is contractive, but β-reducing

(λf :: ∗ → ∗. µ f) (λx :: ∗. x)

produces µ (λx :: ∗. x). However, we treat non-contractive types specially:

• when defining equivalence, we ensure they are equal to no contractive type;

• during equivalence checking, we avoid expanding them, to prevent equating them
with all other types as before.

Non-contractive types also threaten confluence of infinitary reduction. When f :: ∗ → ∗
is non-contractive, the infinite expansion t = (µf)∞ is a nasty infinite loop—in particular,
each of its reducts has a redex at its root. In the literature, terms such as t are known as
root-active terms. Infinitary reduction is not confluent unless we identify all such terms.
To restore confluence, one uses Böhm-reduction w.r.t. root-active terms, that is, one
allows root-active terms to reduce to a special symbol ⊥, obtaining the Berarducci-tree [7]
of a term, a variant of the better known Böhm-tree. Therefore, we define two types to be
equivalent if their Berarducci-trees are. Contractive types are never equivalent to ⊥; this
is sufficient to obtain a satisfactory metatheory.

5.2. Type Soundness

We prove type soundness for Fµω : Well-typed closed terms never get stuck during evaluation.
The proof has the same architecture as the one for Fω by Pierce [45, Chapter 30], because
Fµω is basically Fω with the standard record/variant extensions and a non-standard type
equivalence relation. Pierce proves preservation and progress for Fω, following Wright
and Felleisen [53], and the proof consists of 4 steps.

1. Lemmas 30.3.1–30.3.4 in Pierce [45]: the standard strengthening, weakening and
substitution lemmas for Fω. They carry over to Fµω with minimal change, because
they are unrelated to type equivalence.

20

τ ′ ::= infinitary lambda term
⊥ bottom

‖ ι Λµ constant (Fig. 2)
‖ α variable
‖ λα. τ ′ abstraction
‖ τ ′ τ ′ application

Figure 7: Λ∞, the language of infinitary lambda terms with a special constant ⊥. We
reuse Greek letters for Λ∞ terms, because they correspond to types in Fµω .
Following Czajka [18], we use double bars ‖ to signal coinductive definitions.

λα

@
α @

α @
α · · ·

Figure 8: The infinitary lambda term µ∞ = λα. α (α (α · · ·)).

2. Lemmas 30.3.5–30.3.11: a confluence proof for the type-level language of Fω, which
is a version of simply typed λ-calculus. We obtain an analogous result through
interpreting Fµω types as infinitary λ-terms, and reusing Czajka’s confluent reduction.

3. Lemmas 30.3.12, 30.3.13 and theorem 30.3.14: Using confluence of Fω types, Pierce
proves an inversion lemma and uses it to establish preservation. We will replicate
this step for Fµω .

4. Lemma 30.3.15 and theorem 30.3.16: Progress is established through a canonical-
forms lemma. We will replicate this step for Fµω .

Step 2 contains the most important idea in our soundness proof, namely the connection
between recursive types and infinitary lambda calculus. We detail this connection in
Sec. 5.2.1. Steps 3 and 4 are more routine; we summarize the results in Sec. 5.2.2. All
proofs are found in Appendix B.

5.2.1. Type Equivalence and Type-level Confluence

In this section, we formalize type equivalence following the ideas sketched in Sec. 5.1,
making them precise. The view of Fµω types as infinitary lambda terms, for example, is
formalized as the infinite interpretation function below. Fig. 7 shows the target language
Λ∞ of infinite interpretation, an untyped infinitary λ-calculus with a special symbol ⊥.

21

τ ′ ⇒β τ
′

τ ′ ⇒⊥ τ ′

(λα. σ) τ ⇒β [α 7→ τ]σ

τ1 ⇒β τ2

(λα. τ1)⇒β (λα. τ2)

σ1 ⇒β σ2

σ1 τ ⇒β σ2 τ

τ1 ⇒β τ2

σ τ1 ⇒β σ τ2

τ 6= ⊥ τ is root-active (Definition 4)
τ ⇒⊥ ⊥

Figure 9: Rules for β- and Böhm-contractions according to Czajka [18]: β-contraction
is the relation derivable by ⇒β rules; Böhm-contraction ⇒β⊥ is the relation
derivable by interlacing ⇒β and ⇒⊥ rules.

Definition 1 (infinite interpretation). Let τ ∈ Λµ be a type of Fµω . The infinite
interpretation τ∞ ∈ Λ∞ is the infinitary untyped λ-term obtained from τ by erasing kind
annotations and replacing each occurrence of µ σ by the application µ∞ σ∞, where µ∞

is the infinite λ-term in Fig. 8:

(λα :: κ. τ)∞ = λα. τ∞ (ι)∞ = ι

(σ τ)∞ = σ∞ τ∞ (α)∞ = α

(µ τ)∞ = µ∞ τ∞

Definition 2 (type equivalence). Two Fµω types σ, τ are equivalent, written σ ≡ τ , if
their infinite interpretations σ∞ and τ∞ are Böhm-equivalent (Definition 5).

To define Böhm-equivalence precisely, we need the notion of β-contraction, Böhm-
contraction and root-active terms from Czajka [18].5 The definitions of β- and Böhm
contraction are inductive; their redexes must occur at finite depth. Following Czajka, we
ignore the issue of α-conversion, as it has standard solutions.

Definition 3 (β-contraction and reduction).

5For clarity, we write contraction and reduction relations using ⇒ instead of Czajka’s →, which we use
for function types.

22

τ ′ ⇒∞β τ ′

τ ⇒∗β ι
τ ⇒∞β ι

(β-Const)

τ ⇒∗β α
τ ⇒∞β α

(β-Var)

σ ⇒∗β (λα. τ) τ ⇒∞β τ ′

σ ⇒∞β (λα. τ ′)
(β-Abs)

σ ⇒∗β τ1 τ2 τ1 ⇒∞β τ ′1 τ2 ⇒∞β τ ′2
σ ⇒∞β τ ′1 τ

′
2

(β-App)

Figure 10: Parallel multistep β-reduction ⇒∞β according to Czajka [18], defined coinduc-
tively. The relation ⇒∗β is the reflexive transitive closure of β-contraction ⇒β

(Fig. 9).

• The (single-step) β-contraction relation ⇒β is defined inductively by the ⇒β rules
in Fig. 9.

• Parallel multistep β-reduction is the relation ⇒∞β defined coinductively in Fig. 10.

We call ⇒∞β parallel multistep β-reduction because it permits reduction at an infinite
number of locations in a term, but at each location permits only a finite number of
β-contraction steps.
Root-active terms are ⊥ and those that can always reduce to β-redexes by parallel

multistep β-reduction. This intuition is obtained by simplifying Definition 2 of Czajka
[18].

Definition 4 (root-activeness). An infinitary λ-term σ is root-active if either σ = ⊥, or
else σ ⇒∞β τ implies τ ⇒∞β (λα. τ0) τ1 for some τ0, τ1.

Definition 5 (Böhm-contraction, reduction [18] and equivalence).

• The (single-step) Böhm contraction relation⇒β⊥ is defined inductively by interlacing
⇒β and ⇒⊥ rules in Fig. 9.

• Parallel multistep Böhm-reduction, or simply Böhm reduction, is the relation ⇒∞β⊥
on infinitary λ-terms defined coinductively in Fig. 11.

• Two infinitary λ-terms σ1, σ2 are Böhm equivalent, written σ1 ≡β⊥ σ2, if there
exists a term τ such that both σ1 ⇒∞β⊥ τ and σ2 ⇒∞β⊥ τ .

23

τ ′ ⇒∞β⊥ τ ′

τ ⇒∗β⊥ ⊥
τ ⇒∞β⊥ ⊥

(B-Bot)

τ ⇒∗β⊥ ι
τ ⇒∞β⊥ ι

(B-Const)

τ ⇒∗β⊥ α
τ ⇒∞β⊥ α

(B-Var)

σ ⇒∗β⊥ (λα. τ) τ ⇒∞β⊥ τ ′

σ ⇒∞β⊥ (λα. τ ′)
(B-Abs)

σ ⇒∗β⊥ τ1 τ2 τ1 ⇒∞β⊥ τ ′1 τ2 ⇒∞β⊥ τ ′2
σ ⇒∞β⊥ τ ′1 τ ′2

(B-App)

Figure 11: Böhm-reduction ⇒∞β⊥ according to Czajka [18], defined coinductively. The
relation ⇒∗β⊥ is the reflexive transitive closure of Böhm-contraction ⇒β⊥
(Fig. 9).

24

Böhm-reduction is transitive and confluent, so the definition of Böhm-equivalence above
is an actual equivalence relation.

Lemma 6. Böhm-reduction ⇒∞β⊥ is transitive.

Theorem 7 (confluence of Böhm-reduction [18]). If σ ⇒∞β⊥ τ1 and σ ⇒∞β⊥ τ2, then there
exists τ3 such that τ1 ⇒∞β⊥ τ3 and τ2 ⇒∞β⊥ τ3.

Corollary 8.

1. Böhm-equivalence is reflexive, symmetric and transitive on infinitary λ-terms.

2. Type equivalence of Fµω is reflexive, symmetric and transitive.

The relation between type equivalence and Böhm reduction is most significant in the
shape-preservation lemma, which implies that function types are never equivalent to
records, and universal types are never equivalent to variants. An analogous statement
is Lemma 30.3.12 in Pierce [45]. The shape preservation lemma is important in proving
progress and preservation properties of Fµω , as well as the decidability of typechecking in
Fµ∗ω .

Lemma 9 (preservation of shape under Böhm equivalence). If ι σ1 · · ·σn ≡ ι′ τ1 · · · τn
as finite Fµω types, then ι = ι′ and σi ≡ τi for all i ∈ 1..n.

As exemplified in Sec. 2.2, Böhm equivalence is powerful. Here we show a further
example, which unlike earlier ones goes beyond the decidable subset of Fµω . The following
definitions of polymorphic lists are intuitively equivalent.

type List1 = λα :: ∗. µ (λβ :: ∗. 〈nil : α, cons : β〉)
type List2 = µ (λγ :: ∗ → ∗. λα :: ∗. 〈nil : α, cons : γ α〉)

In Fµω , List1 and List2 are actually equivalent types, because their infinite interpretations
Böhm-reduce to the same infinitary λ-term:

λα :: ∗. 〈nil : α, cons : 〈nil : α, cons : · · ·〉〉.

5.2.2. Evaluation, Preservation and Progress

We use a standard call-by-name semantics of Fµω . Since adding equirecursive types does
not affect either the definition of values or the evaluation rules, most evaluation rules are
pretty standard and are listed in Fig. 16 on page 39.
The preservation and progress theorem of Fµω are analogous to Theorems 30.3.14 and

30.3.16 of Pierce [45], both in statement and in proof. Together they imply that whenever
progress and preservation hold for constants, no closed, well-typed Fµω term ever gets
stuck.

Theorem 10 (preservation). Suppose all E-Delta rules preserve typing. If Γ ` t : τ
and t⇒ t′, then Γ ` t′ : τ .

25

Theorem 11 (progress). Suppose E-Delta rules satisfy progress in the following sense.

If s is a closed, well-typed term of the form c v, c [τ], c.l, case c of v, or
case v of c, then s is reducible by an E-Delta rule.

Let t0 be a closed, well-typed term. Then either t0 is a value or there exists t′0 such that
t0 ⇒ t′0.

5.3. Decidability of Type Checking First-order Recursive Types

As discussed, Fµ∗ω is the subset of Fµω obtained by restricting the kind of recursive types
to ∗. Formally, the kinding rule K-Fix is restricted on µ as follows:

Γ ` τ : ∗ → ∗
Γ ` µ τ : ∗

(K-Fix*)

In this section, we show that typechecking Fµ∗ω is decidable. The architecture of a
type checker for Fµ∗ω is quite similar to the one for Fω [45]. It is defined by a set of
syntax-directed, algorithmic typing rules, which synthesize the type τ from the typing
context Γ and the term t such that Γ ` t : τ holds. We list the algorithmic typing rules in
Appendix C. Here we will only discuss the two subroutines significantly different from an
Fω type checker: deciding type equivalence (Sec. 5.3.1), and discovering type arguments
for type-level constants (Sec. 5.3.2). These subroutines correspond to changed parts of
the soundness proof, that is, respectively, to Corollary 8 and Lemma 9.

One may attribute the decidability of Fµ∗ω to the relative simplicity of its types: Their
infinite normal forms are regular trees [31], that is, each has only a finite number of
distinct subtrees [45, Def. 21.7.2]. This is provable by applying section 21.9 of Pierce [45]
to NFµ∗ (Theorem 59).

5.3.1. Deciding Type Equivalence

We defined type equivalence as Böhm-equivalence ≡β⊥ of types interpreted as terms of
infinitary λ-calculus Λ∞ (Definition 2). Write Λµ∗ for the type-level language of Fµ∗ω ;
then type equivalence is captured in the following diagram.

Λµ∗/ ≡ Λ∞/ ≡∞β
(·)∞

Two components of type equivalence resist algorithmic verification:

1. checking β-equivalence of infinite terms, and

2. detecting root-active terms (Definition 4).

Both problems become decidable when we restrict recursive types to kind ∗. Since recursive
types µ τ may not occur at the operator position of type-level applications, reducing the
β-redex µ∞ τ∞ (cf. Fig. 8) never produces new β-redexes. As a result, by β-normalizing

26

Fµ∗ω types, we essentially obtain finite representations of normal forms with respect to
Böhm-reduction,6 where all remaining redexes come from subterms µ σ. Those finite
normal forms allow us to verify β-equivalence by traditional algorithms for simple recursive
types (Sec. 3.4.1), and detect root-active terms by checking contractiveness, for which
(at this point) we can reuse what is essentially the standard definition (Definition 13).
Through standard techniques, we characterize the languages of normal forms for Λµ∗ and
Λ∞ through their grammars.

Definition 12 (normal form languages, µ-equivalence, infinite expansion).

• NFµ∗ is the language of Fµ∗ω types in β-normal form (that is, without β-redexes),
defined by the nonterminal m in Fig. 12.

• NF∞ is the language of infinitary λ-terms in Böhm-normal form (that is, without
Böhm-redexes), defined by the nonterminal m′ in Fig. 12.

• The relation ≡µ on NFµ∗ terms, called µ-equivalence, is defined coinductively in
Fig. 13. Again, we ignore the issue of α-conversion.

• Each m ∈ NFµ∗ has an infinite expansion Ex(m) ∈ NF∞ as defined inductively in
Fig. 14. The syntactic contractiveness criterion is specified in Definition 13.

The µ-equivalence relation is essentially an extension of the type equivalence defined in
Fig. 1; rules (Eq-µL) and (Eq-µR) are reformulations of (Eq-µL-Simple) and (Eq-
µR-Simple); function types need no special handling, because → is simply treated as a
primitive type constructor.

Definition 13. An NFµ∗ term m is non-contractive if

m = µ (λα1 :: ∗. µ (λα2 :: ∗. (· · · (µ (λαk :: ∗. αi)) · · ·)))

for some i ∈ 1..k. The term m is contractive if it is not non-contractive.

The ≡µ rules have extra conditions such as “m does not start with µ” in order to
make ≡µ an invertible relation, i. e., each judgment m1 ≡µ m2 has a unique derivation
tree. Theorem 21.6.2 and Definition 21.6.3 of Pierce [45] present gfps, an algorithm that
decides coinductively-defined finite-state invertible relations. We use gfps to decide ≡µ.
The algorithm and its termination property are discussed in Appendix D.4.

To decide type equivalence in Fµ∗ω , we decide ≡µ on NFµ∗ terms instead. The strategy
is justified in the following theorem.

Theorem 14. Let σ1, σ2 be Fµ∗ω types with m1, m2 as their β-normal forms. Then
σ1 ≡ σ2 if and only if m1 ≡µ m2.

6In particular, we use Böhm-reduction w.r.t root-active terms; normal forms for this variant of Böhm-
reduction are called Berarducci-trees, while normal forms according to usual Böhm-reduction are the
better-known Böhm-trees.

27

m ::= NFµ∗ term
n finite neutral term

| λα :: κ. m annotated abstraction

n ::= finite neutral term
ι Λµ constant (Fig. 2)

| α variable
| n m application
| µ n fixed-point of neutral term
| µ (λα :: ∗. n) fixed-point of abstraction

m′ ::= NF∞-term (Berarducci-tree)
n′ infinite neutral term

‖ λα. m′ unannotated abstraction

n′ ::= infinite neutral term
⊥ bottom

‖ ι Λµ constant (Fig. 2)
‖ α variable
‖ n′ m′ application

Figure 12: Inductively-defined syntax of NFµ∗-terms m, and coinductively-defined syntax
of NF∞-terms m′. As in Czajka [18], double vertical bars signal coinductive
definitions.

28

m ≡µ m

α ≡µ α
(Eq-TVar)

ι ≡µ ι
(Eq-Prim)

n1 ≡µ n2 m1 ≡µ m2

n1 m1 ≡µ n2 m2
(Eq-AppCong)

m1 ≡µ m2

λα. m1 ≡µ λα. m2
(Eq-ξ)

n1 (µ n1) ≡µ m2

µ n1 ≡µ m2
(Eq-µL-Neutral)

m1 ≡µ n2 (µ n2) m1 does not start with µ
m1 ≡µ µ n2

(Eq-µR-Neutral)

[α 7→ µ (λα :: ∗. n1)]n1 ≡µ m2 α is contractive in n1

µ (λα :: ∗. n1) ≡µ m2
(Eq-µL)

m1 ≡µ [α 7→ µ (λα :: ∗. n2)]n2
α contractive in n2
m1 does not start with µ

m1 ≡µ µ (λα :: ∗. n2)
(Eq-µR)

µ (λα : ∗. n1) and µ (λα : ∗.n2) are non-contractive
µ (λα : ∗. n1) ≡µ µ (λα : ∗. n2)

(Eq-µ⊥)

Figure 13: Coinductive rules of µ-equivalence.

29

Ex(m) = m′

Ex(ι) = ι Ex(n m) = Ex(n) Ex(m) Ex(λα :: κ. m) = λα. Ex(m)

Ex(α) = α Ex(µ n) = Ex(n) Ex(µ n)

Ex(µ (λα :: ∗. n)) =

{
Ex([α 7→ µ (λα :: ∗. n)]n) if µ (λα :: ∗. n) is contractive,
⊥ if µ (λα :: ∗. n) is non-contractive.

Figure 14: Infinite expansion of m ∈ NFµ∗ into Berarducci-trees Ex(m) ∈ NF∞.

Theorem 14 is proven in two steps. First we show that infinite expansion Ex captures
exhaustive Böhm-reduction ⇒∞β⊥, then we show µ-equivalent terms to be exactly those
expanding to the same infinite terms in NF∞.

Lemma 15 (commuting diagram). Let m be the β-normal form of the Fµ∗ω -type σ. Then
σ∞ ⇒∞β⊥ Ex(m).

σ ∈ Λµ∗

σ∞ ∈ Λ∞

m ∈ NFµ∗

Ex(m) ∈ NF∞

(·)∞ Ex(·)

⇒∗β

⇒∞β⊥

Lemma 16 (µ-expansion). m1 ≡µ m2 if and only if Ex(m1) = Ex(m2).

The remaining proof of Theorem 14 is straightforward: σ1 ≡ σ2 iff σ∞1 ≡∞β⊥ σ∞2 iff
Ex(m1) = Ex(m2) iff m1 ≡µ m2.
Pottier [46] already mentioned the idea of reducing types to β-normal forms and

reusing algorithms for comparing recursive types, and conjectured that they’d work. We
refine and substantiate this conjecture, clarifying some subtle points. In particular, the
equivalence checking rules in Fig. 13 needs some extra rules to handle fixed points and
unreduced applications of neutral terms. Fµ∗ω type operators can be universally quantified,
higher-kinded type variables, so even normal forms can contain applications.

5.3.2. Discovering Type Arguments for Type-level Constants

To decide whether a simply typed λ-abstraction λx : σ. t has type τ , a typechecker must
first check that τ is a function type σ1 → σ2, and then verify that σ1 = σ and σ2 is the
type of t. In Fω and Fµω , however, λx : σ. t may have type τ even if τ is not a function
type—it needs only be equivalent to a function type. Similar problems arise not just for λ

30

and →, but for the introduction and elimination forms of all other type constants. Hence,
we need a decision procedure for the following question:

Is a well-kinded Fµ∗ω type τ equivalent to the application of some type
constant ι to types σ1, . . . , σk? In other words, does τ ≡ ι σ1 · · ·σk hold? If
it does, then compute k, ι, σ1, · · · , σk.

In Fω, a decision procedure for this question only needs to normalize type τ and verify
if the result is literally of form ι σ1 · · ·σk. In Fµω , however, we need to handle additional
cases for the β-normal forms of types, namely those starting with µ. We deal with the
new cases via the following lemma, which is related to Lemma 21.8.6 in Pierce [45].

Lemma 17. Let m1 ∈ NFµ∗ be a contractive Fµ∗ω type in β-normal form such that
Γ ` m1 :: κ. Then there exists m2 ∈ NFµ∗ computable from m1 such that m2 ≡µ m1,
Γ ` m2 :: κ, and m2 does not start with µ.

The type m2 is computed from m1 by unrolling µ at the top level until a non-recursive
type is encountered.
To discover whether τ ≡ ι σ1 · · ·σk, we normalize τ to m1 ∈ NFµ∗. If m1 is non-

contractive, then τ cannot be equivalent to ι σ1 · · ·σk, since the latter is not root-active.
If m1 is contractive, then compute the equivalent type m2 not starting with µ. Since Fµ∗ω
recursive types have kind ∗, the final type operator n of m2 is either a constant a variable,
or a lambda abstraction. If n = ι, then τ ≡ ι σ1 · · ·σk and we can extract k, ι, σ1, . . . , σk
by examining m2. If n is a variable or a lambda abstraction, then τ is not equivalent to
any type of the form ι σ1 · · ·σn. Details are in Appendix D.3.

6. From Type Functions to Traversable Functors

A traversable functor τ : ∗ → ∗ admits the method

traverse〈τ〉 : ∀G :: ∗ → ∗. Applicative G→
∀α1α2. (α1 → G α2)→ τ α1 → G (τ α2)

satisfying certain laws [34, 39]. Traversable functors are a powerful abstraction for datatype
operations [27]. The formalism of datatypes in Fµω makes it possible to express generic pro-
gramming combinators such as compos [13], uniplate [41], and gmapT/gmapQ/gmapM [38]
as instances of traverse; details are left as an exercise for the reader.
Despite its power, traverse〈τ〉 can be generated automatically for types designating

locations in a datatype built from records, variants, applications, λ and µ. Fig. 15 displays
a traversal-generating macro in Hinze’s notation of polytypic values [29]. Type arguments
make the macro look harder than it really is. To reproduce Fig. 15, programmers need
only ask themselves how traverse should behave on records, variants and µ-types; the
other constructs are handled by a version of the binary parametricity transformation
[8, 9]. Due to space constraint, we defer further discussions to Appendix E.

31

type Applicative G = {pure : ∀α. α→ G α, call : ∀αβ. G (α→ β)→ G α→ G β}
type Traverse〈τ :: κ〉 = ∀G. Applicative G→ Trav〈κ〉 τ τ

type Trav〈∗〉 = λαβ :: ∗. α→ G β

type Trav〈κ1 → κ2〉 = λfg :: κ1 → κ2. ∀αβ : κ1.Trav〈κ1〉 α β → Trav〈κ2〉 (f α) (g β)

traverse〈τ〉 : Traverse〈τ :: κ〉
traverse〈τ〉 = ΛG :: ∗ → ∗. λg : Applicative G. trav〈τ〉

trav〈α〉 = pα

trav〈λα :: κα. σ〉 = Λα1 :: κα. Λα2 : κα. λpα : Trav〈κα〉 α1 α2. trav〈σ〉
trav〈σ τ〉 = trav〈σ〉 [rename1(τ)] [rename2(τ)] trav〈τ〉
trav〈µ σ〉 = fix (trav〈σ〉 [rename1(µ σ)] [rename2(µ σ)])

trav〈{fst , snd}〉 = Λα1α2 :: ∗. λpα : α1 → G α2. Λβ1β2 :: ∗. λpβ : β1 → G β2.

λx : {fst : α1, snd : β1}.
g.call [β2] [{fst : α2, snd : β2}]

(g.call [α2] [β2 → {fst : α2, snd : β2}]
(g.pure [α2 → β2 → {fst = α2, snd = β2}]

(λyz. {fst = y, snd = z}))
(pα x.fst))

(pβ x.snd)

trav〈〈inj 〉〉 = Λα1α2 :: ∗. λpα : α1 → G α2. λx : 〈inj : α1〉.

case x of

inj = λyα : α1. g.call [α2] [〈inj : α2〉]

(g.pure [α2 → 〈inj : α2〉]
(λzα. 〈inj = zα〉 as 〈inj : α2〉)) (pα yα)

renamei(τ) = the result of renaming every free variable α 6= g in τ to αi

Figure 15: Polytypic definition [29] of traverse. For clarity, we only show trav for a 2-field
record and a 1-case variant.

32

7. Future Work

As we have seen in Sec. 2.2, different type constructors that refer to the same datatype
can have some redundancy with each other. To reduce such redundancy, instead of adding
all the needed parameterization, type constructor could be specified by “overriding” some
parts in another one, similarly to inheritance.

This paper only proves soundness of Fµω and decidability of a fragment. We expect that
a practical implementation would be relatively straightforward. Implementing systems
with equirecursive types does not have special impact on the runtime representation of
datatypes; data constructors (that is, introduction forms for records and variants) remain
unchanged, but do not stop acting as introduction forms for recursive types.

However, some issues deserve some attention. We do not discuss complexity of deciding
type equality, which depends on complexity of two steps.

• Normalization of types, like for System Fω and languages with type synonyms.
While naive normalization can produce output of exponential size, this issue can be
alleviated by representing types as DAGs instead of trees to preserve sharing [49].

• Comparing normalized Fµω -types: the algorithm we consider takes quadratic instead
of linear time. There’s work improving this time bound to O(n log n) [24]; in future
work, we plan to investigate how to extend this algorithm to apply to DAGs.

We leave further investigation on these issues to future work.

8. Conclusion

As explained in this paper, when combining datatype-generic programming (DGP) tech-
niques one runs into the tyranny of the dominant functor. Usual workarounds for this
tyranny require at least either invoking explicitly isomorphisms explicitly or restricting
traversal schemes, and limit the applicability of DGP techniques.
To avoid such drawbacks, we have introduced System Fµω , a type system combining

the expressiveness of System Fω (required for DGP) and strong equirecursive types.
We have given a novel proof that this system is sound, by a novel combination of the
metatheory of System Fω together with an extension of simple equirecursive types, relying
on infinitary λ-calculus. By extending algorithms developed for equirecursive types, we
have also shown that if we restrict Fµω to first-order equirecursive types it enjoys decidable
typechecking. We stick to first-order equirecursive types because practical algorithms for
type equivalence in more expressive systems are a long-standing research problem.

Finally we have shown how the tyranny of the dominant decomposition does not arise
in Fµω . We have prototyped a design based on analogous ideas in a Scala library, which
enabled us to encode different DGP techniques in an interoperable way.

33

Appendices

The appendices contain details omitted from the main body of the paper. Some theorems
are re-stated from the original paper with the same number, but they are numbered
according to the place where they first appear, hence theorem numbering is out of order
sometimes.

A. Basic Properties of Böhm-reduction

In this section, we prove substitution and transitivity lemmas for Böhm-reduction. The
proofs follow the architecture of the transitivity proof for parallel multistep β-reduction
in Endrullis and Polonsky [21, Lemma 4]. Some tedious arguments are included for
completeness.
The first lemma is immediate by the definition of ⇒∞β and ⇒∞β⊥.

Lemma 18.

1. If σ1 ⇒∗β σ2 and σ2 ⇒∞β σ3, then σ1 ⇒∞β σ3.

2. If σ1 ⇒∗β⊥ σ2 and σ2 ⇒∞β⊥ σ3, then σ1 ⇒∞β⊥ σ3.

We have so far taken substitution on infinitary terms for granted. In truth, our
substitution is defined in Czajka [18] as well as Endrullis and Polonsky [21] by guarded
corecursion:

[α 7→ σ]β =

{
σ if α = β

β if α 6= β

[α 7→ σ]ι = ι

[α 7→ σ](τ1 τ2) = [α 7→ σ]τ1 [α 7→ σ]τ2

[α 7→ σ](λβ. τ) = λβ. [α 7→ σ]τ (β /∈ fv(σ))

Endrullis and Polonsky [21] mechanize variables as de Bruijn indices so as never to worry
about α-conversion. They state the following property.

Property 19 (swapping substitutions). If β /∈ fv(ρ), then

[α 7→ ρ][β 7→ σ]τ = [β 7→ [α 7→ ρ]σ][α 7→ ρ]τ.

Let us restate Lemma 5 in Czajka [18].

Lemma 20 (substitution preserves root-activeness). If τ is root-active, then so is
[α 7→ σ]τ .

Lemma 21 (substitution preserves ⇒β⊥). If σ ⇒β⊥ τ , then [α 7→ ρ]σ ⇒β⊥ [α 7→ ρ]τ .

Proof. By induction on σ ⇒β⊥ τ .

34

Case σ 6= ⊥ is root-active and τ = ⊥. By Lemma 20, [α 7→ ρ]σ is root-active and
Böhm-contraction to ⊥ = [α 7→ ρ]τ .
Case σ = (λβ. σ0) σ1 and τ = [β 7→ σ1]σ0.

[α 7→ ρ]((λβ. σ0) σ1) = (λβ. [α 7→ ρ]σ0) [α 7→ ρ]σ1

⇒β⊥ [β 7→ [α 7→ ρ]σ1][α 7→ ρ]σ0

= [α 7→ ρ][β 7→ σ1]σ0.

Case σ = λβ. σ0, τ = λβ. τ0, and σ0 ⇒β⊥ τ0. By the induction hypothesis, [α 7→
ρ]σ0 ⇒β [α 7→ ρ]τ0. Thus

[α 7→ ρ]σ = λβ. [α 7→ ρ]σ0

⇒β⊥ λβ. [α 7→ ρ]τ0

= [α 7→ ρ]τ.

The cases for the application congruence rules are similar.

Corollary 22 (substitution preserves ⇒∗β⊥). If σ ⇒∗β⊥ τ , then [α 7→ ρ]σ ⇒∗β⊥ [α 7→ ρ]τ .

Proof. Induction on the number of steps in σ ⇒∗β⊥ τ .

Lemma 23 (substitution). If σ1 ⇒∞β⊥ σ2 and τ1 ⇒∞β⊥ τ2, then [α 7→ σ1]τ1 ⇒∞β⊥ [α 7→
σ2]τ2.

Proof. We show [α 7→ σ1]τ1 ⇒∞β⊥ [α 7→ σ2]τ2 by coinduction, with case analysis on
τ1 ⇒∞β⊥ τ2.
Case B-Const: We have τ1 ⇒∗β⊥ τ2 = ι. Applying Corollary 22 to the zero-step
contraction σ1 ⇒∗β⊥ σ1 yields

[α 7→ σ1]τ1 ⇒∗β⊥ [α 7→ σ1]ι = [α 7→ σ2]ι,

as desired.
Case B-Var: We have τ1 ⇒∗β⊥ τ2 and τ2 is a variable. If τ2 6= α, then the argument
is identical to the case for B-Const. Suppose τ2 = α. Applying Corollary 22 to the
zero-step contraction σ1 ⇒∗β⊥ σ1 yields

[α 7→ σ1]τ1 ⇒∗β⊥ [α 7→ σ1]α = σ1 ⇒∞β⊥ σ2 = [α 7→ σ2]α.

The desired relation follows from Lemma 18.
Case B-Abs: τ1 ⇒∗β⊥ (λβ. τ10), τ2 = (λβ. τ20), and τ10 ⇒∞β⊥ τ20.

[α 7→ σ1]τ1 ⇒∗β⊥ λβ. [α 7→ σ1]τ10 (Corollary 22)

⇒∞β⊥ λβ. [α 7→ σ2]τ20 (coinduction hypothesis)

= [α 7→ σ2]τ2.

By Lemma 18, [α 7→ σ1]τ1 ⇒∞β⊥ [α 7→ σ2]τ2.

35

Case B-App: Similar to B-Abs.

Czajka [18, Lemma 36] states that root-activeness propagates backward through Böhm-
reduction.

Lemma 24 (propagation of root-activeness). If σ ⇒∞β⊥ τ and τ is root-active, so is σ.

Lemma 25 (swapping ⇒∞β⊥ and ⇒β⊥). If ρ⇒∞β⊥ σ and σ ⇒β⊥ τ , then ρ⇒∞β⊥ τ .

Proof. By induction on σ ⇒β⊥ τ .
Case σ is root-active and τ = ⊥. By Lemma 24, ρ is root-active and Böhm-contracts to
⊥.
Case σ = (λα. σ0) σ1, and τ = [α 7→ σ1]σ0. Expanding ρ⇒∞β⊥ σ two levels, we obtain

ρ⇒∗β⊥ (λα. ρ0) ρ1, ρ0 ⇒∞β⊥ σ0, ρ1 ⇒∞β⊥ σ1.

Then

ρ⇒∗β⊥ [α 7→ ρ1]ρ0 ⇒∞β [α 7→ σ1]σ0

by Lemma 23.
Case σ = (λα. σ0), τ = (λα. τ0), and σ0 ⇒β⊥ τ0. Expanding ρ⇒∞β⊥ σ once, we obtain

ρ⇒∗β⊥ (λα. ρ0), ρ0 ⇒∞β⊥ σ0.

By the induction hypothesis, ρ0 ⇒∞β⊥ σ0 ⇒β⊥ τ0 implies ρ0 ⇒∞β⊥ τ0. Therefore ρ⇒∞β⊥ τ
by B-Abs.
The application congruence rules of ⇒β⊥ are argued similarly.

Corollary 26. If ρ⇒∞β⊥ σ and σ ⇒∗β⊥ τ , then ρ⇒∞β⊥ τ .

Proof. Induction on the number of steps in σ ⇒∗β⊥ τ .

Lemma 6. Böhm-reduction ⇒∞β⊥ is transitive.

Proof. Suppose ρ ⇒∞β⊥ σ and σ ⇒∞β⊥ τ . We show ρ ⇒∞β⊥ τ by coinduction, with case
analysis on σ ⇒∞β⊥ τ .
Case B-Bot, B-Const or B-Var: In all 3 cases we have σ ⇒∗β⊥ τ , and ρ⇒∞β⊥ τ follows
from Corollary 26.
Case B-Abs: σ ⇒∗β⊥ (λα. σ0), τ = (λα. τ0), and σ0 ⇒∞β⊥ τ0. By Corollary 26 we have
ρ⇒∞β⊥ (λα. σ0). Expanding this relation gives us

ρ⇒∗β⊥ (λα. ρ0), ρ0 ⇒∞β⊥ σ0.

Now ρ⇒∞β⊥ (λα. τ0) = τ follows from B-Abs.
Case B-App. Similar to B-Abs.

36

B. Type Soundness of F µ
ω

This appendix contains proofs leading to the type soundness of Fµω omitted from Sec. 5.2.

B.1. Preservation

These two lemmas follow from the definition of Böhm contraction and by induction on
the number of contraction steps.

Lemma 27 (preservation of shape under⇒β⊥). If ι σ1 · · ·σn ⇒β⊥ ρ, then ρ = ι ρ1 · · · ρn
and σi ⇒∗β⊥ ρi for all i.

Lemma 28 (preservation of shape under⇒∗β⊥). If ι σ1 · · ·σn ⇒∗β⊥ ρ, then ρ = ι ρ1 · · · ρn
and σi ⇒∗β⊥ ρi for all i.

Now we can prove preservation of shape under Böhm reduction. Its consequence, the
preservation of shape under Böhm equivalence, is stated in the main body of the paper.

Lemma 29 (preservation of shape under Böhm-reduction ⇒∞β⊥). If ι σ1 · · ·σn ⇒∞β⊥ τ ,
then τ = ι τ1 · · · τn and σi ⇒∞β⊥ τi for all i ∈ 1..n.

Proof. By induction on n. If n = 0, then the lemma holds because ι does not reduce by
⇒β or by ⇒⊥. If n > 0, then consider a derivation of ι σ1 · · ·σn ⇒∞β⊥ τ . There exists
a term ρ such that ι σ1 · · ·σn ⇒∗β⊥ ρ and the last Böhm-reduction rule was chosen by
examining ρ. By Lemma 28, ρ = ι ρ1 · · · ρn and σi ⇒∗β⊥ ρi for all i ≤ n. Therefore the
last rule can only be B-App, and we have

τ = τ ′ τn, ι ρ1 · · · ρn−1 ⇒∞β⊥ τ ′, ρn ⇒∞β⊥ τn.

By the induction hypothesis, τ ′ = ι τ1 · · · τn−1 with ρi ⇒∞β⊥ τi for all i ≤ (n− 1). Thus

τ = ι τ1 · · · τn−1 τn.

By Lemma 18, σi ⇒∞β⊥ τi for all i ∈ 1..n, as desired.

Lemma 9 (preservation of shape under Böhm equivalence). If ι σ1 · · ·σn ≡ ι′ τ1 · · · τn
as finite Fµω types, then ι = ι′ and σi ≡ τi for all i ∈ 1..n.

Proof. We have

(ι σ1 · · ·σn)∞ = ι σ∞1 · · ·σ∞n ,
(ι′ τ1 · · · τn)∞ = ι′ τ∞1 · · · τ∞n .

By the definition of type equivalence, there exists an infinitary λ-term ρ such that

ι σ∞1 · · ·σ∞n ⇒∞β⊥ ρ, ι′ τ∞1 · · · τ∞n ⇒∞β⊥ ρ.

By Lemma 29,
ρ = ι ρ1 · · · ρn = ι′ ρ1 · · · ρn,

which gives us ι = ι′. Moreover, σ∞i ⇒∞β⊥ ρi and τ∞i ⇒∞β⊥ ρi for all i. By the definition
of type equivalence, σi ≡ τi.

37

The inversion lemma is analogous to Lemma 30.3.13 in Pierce [45].

Lemma 30 (inversion).

1. If Γ ` λx : σ. t : τ1 → τ2, then τ1 ≡ σ and Γ, x : σ ` t : τ2. Also, Γ ` σ : ∗.

2. If Γ ` Λα :: κ. t : ∀κ′ τ , then κ = κ′ and Γ, α :: κ ` t : τ α.

3. If Γ ` {li = ti} : {li : τi}, then Γ ` ti : τi for all i.

4. If Γ ` 〈lj = tj〉 as σ : 〈li : τi〉, then σ ≡ 〈li : τi〉 and Γ ` tj : τj.

Proof. The proof of part 1 is identical to the proof given in Pierce [45, Lemma 30.3.13].
The proof of part 2 is similar to Pierce’s. Since we formulated ∀κ as type-level constants,

we will reiterate the proof. It is by induction on a more general statement:

If Γ ` Λα :: κ. t : σ and σ ≡ ∀κ′ τ , then κ = κ′ and Γ, α :: κ ` t : τ α.

The induction step is about T-Eq and follows from transitivity of type equivalence
(Corollary 8). The base case happens when Γ ` Λα :: κ. t : σ is derived by T-TAbs. In
this case,

σ = ∀α(λα :: κ. σ0), Γ, α :: κ ` t : σ0

for some type σ0. By Lemma 9, ∀κ = ∀κ′ , which gives us κ = κ′. To obtain Γ, α :: κ ` t :
τ α, we need only apply T-Eq to the equivalence

σ0 ≡ σ α ≡ τ α.

For part 3, we note that the judgement Γ ` {li = ti} : {li : τi} is derived by one
T-Record followed by a series of T-Eq. Let Γ ` {li = ti} : {li : σi} be the judgement
obtained by T-Record; then Γ ` ti : σi. By transitivity of type equivalence, {li : σi} ≡
{li : τi}. Recall that {li : σi} is a shorthand for {li} σ1 · · · σn. Lemma 9 gives us σi ≡ τi,
from which we can derive Γ ` ti : τi via T-Eq.
For part 4, note that the judgement Γ ` 〈lj = tj〉 as σ : 〈li : τi〉 is derived by one

T-Variant followed by a series of T-Eq. Let Γ ` 〈lj = tj〉 as σ : σ be the judgement
obtained by T-Variant; then σ ≡ 〈li : σi〉 and Γ ` tj : σj . By symmetry and transitivity
of type equivalence, 〈li : σi〉 ≡ σ ≡ 〈li : τi〉. Lemma 9 gives us σj ≡ τj , from which we
can derive Γ ` tj : τj via T-Eq.

The term-level evaluation rules are listed in Fig. 16. They are pretty standard; however
the δ-reduction rule E-Delta is a slight generalization of the δ-reduction in Wright and
Felleisen [53], in that we allow constants to interact with all elimination forms, whereas
Wright and Felleisen’s δ-reduction are only defined for term application, the elimination
form of term abstraction. With our more liberal E-Delta, progress and preservation
are stated uniformly, and we don’t have to artificially forbid polymorphic constants or
constant of records/variant types. An example of E-Delta is the evaluation rule schema
for fixed-point combinators.

fix τ t⇒ t (fix τ t) (E-Deltafix)

38

v ::= value
c constant

| λx : σ. t abstraction
| Λα : κ. t type abstraction

| {li = ti} record
| 〈li t〉 as τ injection

(λx : σ. s) t⇒ [x 7→ t]s
(E-AppAbs)

s⇒ s′

s t⇒ s′ t
(E-App1)

(Λα :: κ. t) [τ]⇒ [α 7→ τ]t
(E-TAppTAbs)

t⇒ t′

t [τ]⇒ t′ [τ]
(E-TApp)

{li = ti}.lj ⇒ tj
(E-ProjRcd)

t⇒ t′

t.l⇒ t′.l
(E-Proj)

τ ≡ 〈li : τi〉
case (〈lj = t〉 as τ) of {li = ti} ⇒ tj t

(E-Variant)

s⇒ s′

case s of t⇒ case s′ of t
(E-Case1)

t⇒ t′

case s of t⇒ case s of t′
(E-Case2)

s⇒ δ(s)
(s has the form c t, c [τ], c.l, case c of t, or case t of c.)

(E-Delta)

Figure 16: Values and call-by-name term-level reduction of Fµω . Rules and their names
match Pierce [45, Chap. 11, 30] where appropriate.

39

Theorem 10 (preservation). Suppose all E-Delta rules preserve typing. If Γ ` t : τ
and t⇒ t′, then Γ ` t′ : τ .

Proof. By induction on the typing derivation Γ ` t : τ . If the judgement is derived by
T-Var, T-Abs, T-TAbs, or T-Eq, then the argument is in the proof of Theorem 30.3.14
in Pierce [45]. The judgement cannot be derived by T-Record or T-Variant; otherwise
t is already a value and does not reduce. It remains to examine T-App, T-Proj and
T-Case.
Case T-App: We know

t = t1 t2, Γ ` t1 : τ2 → τ,

Γ ` t2 : τ2.

From Fig. 16, the reduction t⇒ t′ may be derived by E-App1, E-AppAbs, or E-Delta.
Invoking the induction hypothesis suffices for E-App1. Pierce [45] supplies the argument
for E-AppAbs. If E-Delta applies, then t1 = c, t2 = v and t′ = δ(c v) for some constant
c and value v. The desired judgement Γ ` t′ : τ follows from typing preservation of
δ-reduction.
Case T-TApp: The reduction t⇒ t′ is derived by E-TApp, E-Delta or E-TAppTabs.
The case for E-TApp follows from the induction hypothesis, and the case for E-Delta
follows from typing preservation of δ-reduction. Suppose, therefore, that E-TAppTabs
applies. Then

t = (Λα :: κ. t0) [σ], Γ ` (Λα :: κ. t0) : ∀ τ0,

t′ = [α 7→ σ]t0, Γ ` σ :: κ.

By the inversion lemma, Γ, α :: κ ` t0 : τ0 α. The desired conclusion is Γ ` [α 7→
σ]t0 : [α 7→ σ](τ0 α). We obtain it via the standard type substitution lemma [45,
lemma 30.3.4(3)], whose proof we shall not reproduce here.
Case T-Proj: We know

t = s.lj , Γ ` s : {li : τi}, τ = τj .

The reduction t ⇒ t′ may be obtained from E-Proj, E-Delta or E-ProjRcd. The
desired judgement follows from the induction hypothesis in the case of E-Proj, and it
follows from typing preservation of δ-reduction in the case of E-Delta. Suppose t⇒ t′

by E-ProjRcd. Then

s = {li = si}, t′ = sj .

By part 3 of the inversion lemma (30), Γ ` sj : τj .
Case T-Case: We know

t = case u of s, Γ ` u : 〈li : τi〉,
Γ ` s : {li : τi → τ}.

40

The reduction t⇒ t′ may be obtained from E-Case1, E-Case2, E-Delta or E-Variant.
For the first two, the desired judgement follows from the induction hypothesis. For
E-Delta, it follows from typing preservation of δ-reduction. Suppose E-Variant is used;
then

u = 〈lj = uj〉 as σ, s = {li = si}, t′ = sj uj .

By the inversion lemma, Γ ` uj : τj and Γ ` sj : τj → τ . By T-App we conclude
Γ ` sj uj : τ .

B.2. Progress

The canonical forms lemma is analogous to Lemma 30.3.15 in Pierce [45].

Lemma 31 (canonical forms). Suppose Γ ` v : τv and v is not a constant.

1. If τv = σ → τ , then v is an abstraction.

2. If τv = ∀ τ , then v is a type abstraction.

3. If τv is a record type, then v is a record.

4. If τv is a variant type, then v is an injection.

Proof. The canonical forms lemma is all about the following question:

If Γ ` v : ι τ1 · · · τn and v is not a constant, then how does the top-level
construct of v limits the choice of ι?

To answer this question, we enumerate possible top-level constructs of the value v 6= c.
Since all typing rules other than T-Eq are syntax-directed, we conclude:

1. If Γ ` λx : σ. t0 : τ , then τ ≡ σ → τ0.

2. If Γ ` Λα :: κ. t0 : τ , then τ ≡ ∀ τ0.

3. If Γ ` {li = ti} : τ , then τ ≡ {li : τi}.

4. If Γ ` 〈lj = tj〉 as σ : τ , then τ ≡ 〈li : τi〉.

Using Lemma 9, we can refine the above as follows.

1. If Γ ` λx : σ. t0 : ι τ1 · · · τn, then ι =→.

2. If Γ ` Λα :: κ. t0 : ι τ1 · · · τn, then ι = ∀.

3. If Γ ` {li = ti} : ι τ1 · · · τn, then ι = {li}.

4. If Γ ` 〈lj = tj〉 as σ : ι τ1 · · · τn, then ι = 〈li〉.

41

Assume the antecedent of any part of the canonical forms lemma. Once we have eliminated
the impossible using the 5 statements above, whatever remains (however improbable)
must be the desired conclusion.

Theorem 11 (progress). Suppose E-Delta rules satisfy progress in the following sense.

If s is a closed, well-typed term of the form c v, c [τ], c.l, case c of v, or
case v of c, then s is reducible by an E-Delta rule.

Let t0 be a closed, well-typed term. Then either t0 is a value or there exists t′0 such that
t0 ⇒ t′0.

Proof. This is a near-perfect clone of the proof of Theorem 30.3.16 in Pierce [45].
We prove progress by induction on the typing derivation ∅ ` t0 : τ and case split on

the last rule deriving it. The last rule cannot be T-Var, because t0 is closed. If it is
T-Const, T-Abs, T-TAbs, T-Record, or T-Variant, then t is a value. If it is T-Eq,
then the desired result is immediate from induction hypothesis. The case for T-App,
T-TApp, T-Proj and T-Case are interesting. We will argue for T-Case; the other
cases are argued similarly.
Case T-Case: We know

t0 = case s of t, ∅ ` s : 〈li : τi〉,
∅ ` t : {li : τi → τ}.

By the induction hypothesis, s and t are each a value or reducible. If one of them is
reducible, then t0 is reducible by E-Case1 or E-Case2. Suppose both of them are values.
If s or t is a constant, then t0 reduces by some E-Delta rule. Otherwise Lemma 31 tells
us

s = 〈lj = sj〉 as σ, t = {li = ti}.

By Lemma 30, σ ≡ 〈li : τi〉. The rule E-Variant applies and gives us t0 ⇒ tj sj .

C. Algorithmic Typing Rules

In this appendix, we list the algorithmic typing rules of Fµ∗ω omitted from Sec. 5.3 (Fig. 17).
Our notation is borrowed from Pfenning [44]. The superscript + mark inputs, and −

marks outputs. Our algorithmic typing judgement always has the form

Γ+ ` t+ ↑ τ−.

It means that the type checker takes Γ and t as input, and it synthesizes the type τ as
output.
An implementation of these rules starts by matching t against the conclusion of a

TA-rule, and then checks the conditions from left to right and from top to bottom. By
comparing each TA-rule with the corresponding T-rule (Fig. 6), it is possible to verify
the following properties.

42

Γ+ ` τ+
c :: ∗

Γ+ ` c+ ↑ τ−c
(TA-Const)

x+ : τ− ∈ Γ+

Γ+ ` x+ ↑ τ−
(TA-Var)

Γ+, x+ : σ+ ` t+ ↑ τ− Γ+ ` σ+ :: ∗
Γ+ ` (λx+ : σ+. t+) ↑ σ− → τ−

(TA-Abs)

Γ+ ` t+1 ↑ τ
−
1

Γ+ ` t+2 ↑ τ
−
2 τ+

1 ≡ σ
−
2 → τ− σ+

2 ≡ τ
+
2

Γ ` t1 t2 ↑ τ−
(TA-App)

Γ+, α+ :: κ+ ` t+ ↑ τ−

Γ+ ` (Λα+ :: κ+. t+) ↑ ∀κ− (λα− :: κ−. τ−)
(TA-TAbs)

Γ+ ` t+ ↑ τ−0 τ+
0 ≡ ∀κ− τ− Γ+ ` σ+ :: κ−

Γ+ ` t+ [σ+] ↑ τ− σ−
(TA-TApp)

Γ+ ` t+i ↑ τ
−
i

Γ+ ` {li = t+i } ↑ {li : τ−i }
(TA-Record)

Γ+ ` t+ ↑ τ− τ+ ≡ {l−i : τ−i }
Γ+ ` t+.lj ↑ τ−j

(TA-Project)

Γ+ ` t+ ↑ σ− Γ+ ` τ+ :: ∗ τ+ ≡ 〈l−i : τ−i 〉 σ+ ≡ τ+
j

Γ+ ` 〈lj = t+〉 as τ+ ↑ τ−
(TA-Variant)

Γ+ ` t+ ↑ ρ−

Γ+ ` s+ ↑ σ−
ρ+ ≡ 〈l−i : ρ−i 〉

σ+ ≡ {l′−i : σ−i → τ−i }

l+i = l′+i

ρ+
i ≡ σ

+
i

τ+
1 ≡ τ

+
i

Γ+ ` case t+ of s+ ↑ τ−1
(TA-Case)

Figure 17: Algorithmic typing rules for Fµ∗ω .

43

• Soundness: If Γ+ ` t+ ↑ τ−, then Γ ` t : τ .

• Completeness: If Γ ` t : τ , then Γ+ ` t+ ↑ σ− for some σ ≡ τ .

Furthermore, the TA-rules are syntax-directed, and the TA-judgements in their conditions
are always about a smaller term. Therefore we have

• Termination: The number of TA-rules in any algorithmic typing judgement Γ+ `
t+ : τ− is at most the size of t.

The conditions of TA-rules include kinding judgements and two forms of type equiva-
lence relations. They are to be checked by subroutines.

• Kinding judgemnts Γ+ ` τ+ :: κ+ and Γ ` τ+ : κ−: Since the type language of Fµ∗ω
is a version of simply typed lambda calculus, we take it for granted that kinding
judgements can be checked and kinds can be synthesized.

• Type equivalence of the form σ+ ≡ τ+: Given two Fµ∗ω types, decide whether they
are equivalent. The problem is discussed in Sec. 5.3.1 and the subroutine is listed
at the end of Appendix D.

• Type equivalence of the form σ+ ≡ ι− σ−1 · · ·σ
−
k . Examples include τ+

1 ≡ σ
−
2 → τ−

in TA-App, and τ+ ≡ {l−i : τ−i } in TA-Project. These relations ask whether τ is
equivalent to the result of applying some type constant ι, and if it is, what ι and its
arguments are. The problem and its solution are described in Sec. 5.3.2.

While the TA-rules are only concerned about type synthesis themselves, the decidability
of type equivalence means that they are usable also for verifying a fully known judgement
Γ ` t : τ , in that we compare τ with the type of t synthesized under Γ.

D. Decidability of Type Equivalence on F µ∗
ω

Here we supply details omitted from Sec. 5.3.1 and 5.3.2. To recapitulate, the decision
procedure for equivalence between well-kinded Fµ∗ω -types proceeds in two steps.

1. Convert the well-kinded Fµ∗ω -types to β-normal forms in NFµ∗ (Fig. 12).

2. Decide a coinductively defined relation ≡µ (Fig. 13) on NFµ∗-types with the algo-
rithm gfps (Fig. 18) from Pierce [45].

The procedure is justified in 3 steps. First we establish the commuting diagram lemma
σ∞ ⇒∞β⊥ Ex(nf(σ)) (Lemma 15), which implies that Böhm-equivalence between σ∞ and
τ∞ can be decided by comparing Ex(nf(σ)) and Ex(nf(τ)). Then we establish the µ-
expansion lemma (Lemma 16), namely that Ex translates µ-equivalent terms precisely into
equal infinite terms. The µ-expansion lemma allow us to decide Ex(nf(σ)) = Ex(nf(τ)) by
deciding nf(σ) ≡µ nf(τ). Finally we show that the decision procedure for ≡µ terminates
by counting “subterms” of NFµ∗ terms.

44

From the µ-expansion lemma, we know that µ-equivalence ≡µ is an actual equivalence
relation, i. e., it is reflexive, symmetric and transitive. That enables us to implement the
other subroutine in the Fµ∗ω typechecker, namely the discovery of type arguments, simply
by unrolling µ at the outermost level.
The rest of the section will use the following notions from the main paper:

• the language NFµ∗ of Fµ∗ω types in normal form, and the language NF∞ of infinite
terms in normal form (Fig. 12);

• the infinite term µ∞ (Fig. 8);

• the infinite interpretation function (·)∞ (Definition 1);

• the infinite expansion function Ex(·) (Fig. 14);

• Böhm reduction and Böhm equivalence (Definition 5);

• µ-equivalence ≡µ (Definition 12);

• contractiveness (Definition 13).

D.1. Commuting Diagram Lemma

We will work toward the commuting diagram lemma. Infinite expansion Ex presents the
greatest difficulty: It essentially performs an infinite amount of β-reduction at different
locations. The challenge is to demonstrate that Ex preserves substitution, normal forms,
and Böhm-reduction. Once the preservation properties are shown, the commuting diagram
lemma is immediate.

D.1.1. Infinite Expansion Preserves Substitution

NFµ∗ and NF∞ terms are not closed under substitution in general, because substitution
can create β-redexes. However, as seen from the next lemma, neutral terms are safe to
substitute with. We will only substitute neutral terms into normal forms for the rest of
the section.

Lemma 32.

• Let m ∈ NFµ∗ and let n be a finite neutral term. Then [α 7→ n]m belongs to NFµ∗.
Moreover, if m is neutral, so is [α 7→ n]m.

• Let m′ ∈ NF∞ and let n′ be an infinite neutral term. Then [α 7→ n′]m′ ∈ NF∞.
Moreover, if m′ is neutral, so is [α 7→ n′]m′.

Proof. Every occurrence of the variable α in m is ultimately derived from the production
rule n ::= α, thus occurs where any finite neutral term is allowed. Since finite neutral
terms are defined by a context-free grammar, replacing α by n in m will produce another
term derivable from the grammar of NFµ∗. Suppose m is neutral. If m 6= α, then

45

[α 7→ n]m has the top-level construct of m and has to be neutral. If m = α, then
[α 7→ n]m = n, which is neutral by assumption.
The argument about infinite terms n′, m′ is analogous.

Lemma 33. Let m be an NFµ∗ term and let n be a finite neutral term. Then

Ex([α 7→ n]m) = [α 7→ Ex(n)]Ex(m).

To prove Lemma 33, we do induction with a stronger hypothesis.

Lemma 34. Let m be an NFµ∗ term and let n1, . . . , nk be finite neutral terms. Then

Ex([β1 7→ n1] · · · [βk 7→ nk] m) = [β1 7→ Ex(n1)] · · · [βk 7→ Ex(nk)] Ex(m).

Proof. By induction on m. We will abbreviate

[β1 7→ n1] · · · [βk 7→ nk] m

into
[βi 7→ ni]m.

Case m = ι or m = β /∈ {β1, . . . , βk}. The lemma degenerates to Ex(m) = Ex(m).
Case m = βi. The lemma degenerates to Ex(ni) = Ex(ni).
Case m = n0 m0. Then

Ex(m) = Ex(n0) Ex(m0).

By the induction hypothesis,

Ex([βi 7→ ni]n0) = [βi 7→ Ex(ni)]Ex(n0),

Ex([βi 7→ ni]m0) = [βi 7→ Ex(ni)]Ex(m0).

Thus

Ex([βi 7→ ni]m)

= [βi 7→ Ex(ni)]Ex(n0) [βi 7→ Ex(ni)]Ex(m0)

= [βi 7→ Ex(ni)]Ex(m).

The argument is similar if m = λα :: κ. m0.
Case m = µ n0. Then

Ex(µ n0) = Ex(n0) Ex(m)

= Ex(n0) (Ex(n0) (Ex(n0) · · ·)).

By the induction hypothesis,

Ex([βi 7→ ni]n0) = [βi 7→ Ex(ni)]Ex(n0).

46

Therefore

[βi 7→ Ex(ni)]Ex(µ n0)

= [βi 7→ Ex(ni)]Ex(n0) ([βi 7→ Ex(ni)]Ex(n0) ([βi 7→ Ex(ni)]Ex(n0) · · ·))
= Ex([βi 7→ ni]n0) (Ex([βi 7→ ni]n0) (Ex([βi 7→ ni]n0) · · ·))
= Ex([βi 7→ ni]m).

Case m = µ (λα :: ∗. n). If m is non-contractive, then m has no free variable and the
lemma degenerates to Ex(m) = Ex(m). Assume m to be contractive; then it is also
neutral. By the induction hypothesis,

[βi 7→ Ex(ni)][α 7→ Ex(m)]Ex(n) = Ex([βi 7→ ni][α 7→ m]n),

[α 7→ Ex(m)]Ex(n) = Ex([α 7→ m]n).

Thus

[βi 7→ Ex(ni)]Ex(m) = [βi 7→ Ex(ni)]Ex([α 7→ m]n)

= [βi 7→ Ex(ni)][α 7→ Ex(m)]Ex(n)

= Ex([βi 7→ ni][α 7→ m]n)

= Ex([α 7→ [βi 7→ ni]m][βi 7→ ni]n)

= Ex(µ (λα :: ∗. [βi 7→ ni]n)).

= Ex([βi 7→ ni]m).

D.1.2. Infinite Expansion Preserves Normal Forms

This subsection establishes that infinite expansion Ex maps the normal form of Fµ∗ω types
into infinite terms without β-redexes.

We extend β-contraction to finite types, leaving type constants and µ uninterpreted.

Definition 35. The β-contraction relation ⇒β is extended to finite, Fµ∗ω types by
augmenting the ⇒β rules in Fig. 9 with the following congruence rule for recursive types.

τ1 ⇒β τ2

µ τ1 ⇒β µ τ2

Lemma 36. Let σ be a well-kinded Fµ∗ω -type. Then σ has a β-normal form in the
language NFµ∗.

Proof. Since β-contraction between Fµ∗ω -types does not involve constants, we can think of
constants as variables of a bigger context. We apply preservation and strong normalization
of pure simply typed λ-calculus to conclude that σ has a well-kinded β-normal form τ .
To see that τ belongs to the language NFµ∗, we carry out induction on Γ ` τ : κ.

47

Case K-Fix*: We know τ = µ τ0, Γ ` τ0 : ∗ → ∗. If τ0 is not an abstraction, then by
induction hypothesis, τ0 = n0 is a neutral term and τ = µ n0. If τ0 = λα :: κα. τ1, then
κ = ∗ and Γ, α :: ∗ ` τ1 : ∗. Since no abstraction has kind ∗, τ1 = n1 is a neutral term by
the induction hypothesis and τ = µ (λα :: ∗. n1), as desired.
Case K-Abs: τ = λα :: κ. τ0. By the induction hypothesis, τ0 = m ∈ NFµ∗ and
τ = λα :: κ. m.
Case K-App: τ = τ1 τ2. By the induction hypothesis, τ2 = m ∈ NFµ∗. Since τ is not a
β-redex, τ1 = n is a neutral term by the induction hypothesis and τ = n m.
Case K-Var and K-Const: Immediate, since Λµ∗ variables and constants belong to
NFµ∗.

Lemma 37. If τ ∈ Λ∞ has no β-redex, then τ ∈ NF∞. Moreover, if τ is not an
abstraction, then τ is an infinite neutral term.

Proof. By coinduction on τ .
If τ = ⊥, ι or α, then τ is an infinitary neutral term.
If τ = λα. τ0, then by coinduction hypothesis, τ0 ∈ NF∞. Therefore τ ∈ NF∞.
If τ = τ1 τ2, then τ1 is not an abstraction, as τ has no β-redex. By the coinduction

hypothesis, τ1 is an infinite neutral term and τ2 ∈ NF∞. Therefore τ is an infinite neutral
term.

Lemma 38. Let m ∈ NFµ∗. Then

1. Ex(m) ∈ NF∞, and

2. Ex(m) is an infinite neutral term whenever m is a finite neutral term.

In particular, Ex(m) contains no β-redex.

Proof. By coinduction on the grammar of NF∞ with case analysis on m.
Case m = α or m = ι. Immediate.
Case m = λα :: κ. m0. Immediate from the coinduction hypothesis.
Case m = n m0. We have Ex(m) = Ex(n) Ex(m0). By the coinduction hypothesis,
Ex(n) is an infinite neutral term and Ex(m0) ∈ NF∞. Therefore Ex(m) ∈ NF∞ by the
application production.
Case m = µ n. By definition,

Ex(m) = Ex(n) Ex(m).

By the coinduction hypothesis, Ex(n) is an infinite neutral term and Ex(m) ∈ NF∞,
which gives us Ex(m) ∈ NF∞ by the application production.
Case m = µ (λα1 :: ∗. n2). If m is non-contractive, then Ex(m) = ⊥ and the lemma is
immediate. If m is contractive, then

m = µ (λα1 :: ∗. · · ·µ (λαk :: ∗. n) · · ·)

48

such that n /∈ {α1, . . . , αk} and it does not have the form µ (λβ. · · ·). Write

m1 = m,

mi+1 = µ (λαi+1 :: ∗. · · ·µ (λαk :: ∗. [αi 7→ mi, . . . , α1 7→ m1]n) · · ·),
n′ = [αj 7→ Ex(mj)

i∈k..1] n.

Then

Ex(m) = Ex([αi 7→ Ex(mi)
i∈k..1] n)

= Ex(n′).

The constraints on n means that the neutral term n′ is either a variable, a constant, an
application, or has the form µ n′0. Using previous arguments for these cases, we conclude
that Ex(m) = Ex(n′) is an infinite neutral term.

D.1.3. Eliminating µ

The trickiest cases in the proofs of Lemmas 33 and 38 are about types starting with µ.
This subsection will allow us to avoid much of the difficulty as long as we reason only up
to Böhm-equivalence.
The next lemma is shown by a straightforward induction on Λµ terms.

Lemma 39.

• ([α 7→ n]m)∞ = [α 7→ n∞]m∞.

• If σ ⇒β τ , then σ∞ ⇒β τ
∞.

Lemma 40 (µ-elimination). For all contractive m ∈ NFµ∗ there exists m0 ∈ NFµ∗

computable from m such that m∞ ≡β⊥ m∞0 , Ex(m) = Ex(m0), and m0 does not start
with µ.

Proof. We construct m0 by induction on the number of µ at the front of m. Since Böhm
equivalence and equality on infinite terms are both transitive, it suffices to reduce the
number of µ at the front of m in each induction step.
If m does not start with µ, then choose m0 = m and we are done.
If m = µ n, then choose m0 = n (µ n). Then Ex(m) = Ex(m0) by definition, and

m∞ = µ∞ n∞

⇒β n
∞ (n∞ (n∞ · · ·))

⇐β n
∞ (µ∞ n∞)

= (n (µ n))∞.

49

If m = µ (λα :: ∗. n), then choose m0 = [α 7→ m]n. Since m is contractive, m0 has one
fewer µ at the front. Again Ex(m) = Ex(m0) by definition. We have

m∞ = µ∞ (λα :: ∗. n∞)

⇒β (λα :: ∗. n∞) ((λα :: ∗. n∞) ((λα :: ∗. n∞) · · ·))
⇒β [α 7→ (λα :: ∗. n∞) ((λα :: ∗. n∞) ((λα :: ∗. n∞) · · ·))] n∞

⇐∞β [α 7→ m∞]n∞

= ([α 7→ m]n)∞,

where the last step follows from Lemma 39.

D.1.4. Infinite Expansion Preserves Böhm Reduction

This subsection implements infinite expansion Ex by Böhm reduction.

Lemma 41. m∞ ≡β⊥ Ex(m) for all m ∈ NFµ∗.

Proof. By coinduction on ≡β⊥ with case analysis on m.
Case m = ι or m = α. Immediate.
Case m = n0 m0. By the coinduction hypothesis, n∞0 ≡β⊥ Ex(n0) and m∞0 ≡β⊥ Ex(m0).
We have

m∞ = n∞0 m∞0 ≡β⊥ Ex(n0) Ex(m0) = Ex(m)

by two uses of B-App (Fig. 11).
Case m = λα :: κ. n. By the coinduction hypothesis, n∞ ≡β⊥ Ex(n). We obtain

m∞ = λα :: κ. n∞ ≡β⊥ λα :: κ. Ex(n) = Ex(m)

by two uses of B-Abs.
Case m = µ n or m = µ (λα :: ∗. n). If m is non-contractive, then m∞ is root-active,
Ex(m) = ⊥, and they are Böhm-equivalent by definition. If m is contractive, then by
Lemma 40, there exists m0 such that m∞ ≡β⊥ m∞0 , Ex(m) = Ex(m0), and m0 does not
start with µ. Use one of the previous cases to establish m∞0 ≡β⊥ Ex(m0); the desired
equivalence m∞ ≡β⊥ Ex(m) follows from transitivity.

Lemma 42. m∞ ⇒∞β⊥ Ex(m) for all m ∈ NFµ∗.

Proof. By Lemma 41, m∞ ≡β⊥ Ex(m). Therefore there exists m′ such that m∞ ⇒∞β⊥ m′
and Ex(m)⇒∞β⊥ m′. Since Ex(m) has no β-redex,m′ = Ex(m) and the lemma follows.

50

Lemma 15 (commuting diagram). Let m be the β-normal form of the Fµ∗ω -type σ. Then
σ∞ ⇒∞β⊥ Ex(m).

σ ∈ Λµ∗

σ∞ ∈ Λ∞

m ∈ NFµ∗

Ex(m) ∈ NF∞

(·)∞ Ex(·)

⇒∗β

⇒∞β⊥

Proof. By Lemmas 39 and 42,

σ∞ ⇒∗β m∞ ⇒∞β⊥ Ex(m).

By Lemma 18, σ∞ ⇒∞β⊥ Ex(m).

Corollary 43. Let m be the β-normal form of the Fµ∗ω -type σ. Then σ∞ ≡β⊥ Ex(m).

D.2. µ-Expansion Lemma

We will show that equality on NF∞ terms (i. e., Berarducci trees) are captured by the
coinductive rules of µ-equivalence.

The next lemma is analogous to Lemma 21.8.6 in Pierce [45]. It leads to the µ-expansion
lemma, whence we establish the reflexivity, symmetry and transitivity of ≡µ by relating
it to equality on infinite terms. Alternatively, if we were to prove the transitivity of ≡µ
beforehand, then Lemma 44 would follow from the proof of Lemma 40.

Lemma 44. Let m1, m2 be contractive NFµ∗ terms such that m1 ≡µ m2. Then there
exists m3, m4 such that

m3 ≡µ m4, Ex(m1) = Ex(m3), Ex(m2) = Ex(m4),

and neither m3 nor m4 starts with µ.

Proof. By induction on the total number of µ at the front of m1 and m2.
If neither m1 nor m2 starts with µ, then take m3 = m1 and m4 = m2.
Suppose m1 = µ (λα : ∗. n1). Since we assumed it to be contractive,

[α 7→ m1]n1 ≡µ m2.

The NFµ∗ term [α 7→ m1]n1 has one fewer µ at the front than m1. By the induction
hypothesis, there exist m3 ≡µ m4 such that neither m3 nor m4 starts with µ and

Ex(m3) = Ex([α 7→ m1]n1) = Ex(m1), Ex(m4) = Ex(m2).

Therefore m3 and m4 are the pair we need.

51

Suppose m1 = µ n1. Then

Ex(m1) = Ex(n1) Ex(m1) = Ex(n1 m1).

The term n1 m1 does not start with µ. The induction hypothesis gives us the desired m3,
m4 when invoked on n1 m1 and m2.
The argument is similar in cases where m2 starts with µ and m1 does not.

Lemma 45. If m1 ≡µ m2, then either both are non-contractive or both are contractive.

Proof. Suppose m1 is contractive and m2 is non-contractive. Eq-µ⊥ cannot be used to
establish m1 ≡µ m2. No other rule’s conclusion has a non-contractive term on the right
hand side, therefore m1 6≡µ m2. A similar argument is used if m1 is non-contractive and
m2 is contractive.

We are ready to prove that infinite expansion Ex translates ≡µ verbatim into equality.
It is related to Theorem 21.8.7 in Pierce [45], and its proof is very similar.

Lemma 16 (µ-expansion). m1 ≡µ m2 if and only if Ex(m1) = Ex(m2).

Proof. Part I: “only-if.” m1 ≡µ m2 implies Ex(m1) = Ex(m2). We prove it by
coinduction on equality of infinitary lambda terms, with case distinction on m1 ≡µ m2.
Case one of the Eq-µ rules. By Lemma 45, either m1, m2 are both non-contractive or
are both contractive. If both are non-contractive, then Ex(m1) = Ex(m2) = ⊥. If both
are contractive, then by Lemma 44, there exists m3, m4 such that

m3 ≡µ m4, Ex(m1) = Ex(m3), Ex(m2) = Ex(m4),

and neither m3 nor m4 starts with µ. Use one of the cases below to establish Ex(m3) =
Ex(m4), and we have Ex(m1) = Ex(m2) by symmetry and transitivity of equality.
Case Eq-TVar or Eq-Prim: m1 = m2 = ι or α. In either case, Ex(m1) = Ex(m2) by
definition.
Case Eq-AppCong:

m1 = n1 m10, Ex(m1) = Ex(n1) Ex(m10),

m2 = n2 m20. Ex(m2) = Ex(m2) Ex(m20).

By the coinduction hypothesis, Ex(n1) = Ex(n2) and Ex(m10) = Ex(m20). The desired
equality follows.
Case Eq-ξ:

m1 = λα :: κ. m10, Ex(m1) = λα. Ex(m10),

m2 = λα :: κ. m20, Ex(m2) = λα. Ex(m20).

By the coinduction hypothesis, Ex(m10) = Ex(m20). The desired equality follows.
Part II: “if.” Ex(m1) = Ex(m2) implies m1 ≡µ m2. We prove it by coinduction on
≡µ, with case distinction on the top-level constructs of m1 and m2.

52

We know Ex(m1) and Ex(m2) have the same top-level constructors. By inspecting Ex,
(m1,m2) must have one of the following forms:

(α, α), (ι, ι),

(n1 m10, n2 m), (λα :: κ. m10, λα :: κ. m20),

(µ n1,m2), (m1, µ m2),

(µ (λα :: ∗. n1),m2), (m1, µ (λα :: ∗. n2)).

Case m1 = m2 = α or ι. Then m1 ≡µ m2 by definition.
Case m1 = n1 m10, m2 = n2 m20. Then

Ex(m1) = Ex(n1) Ex(m10), Ex(m2) = Ex(n2) Ex(m20).

By the coinduction hypothesis, n1 ≡µ n2 and m10 ≡µ m20. Eq-AppCong gives us
m1 ≡µ m2.
Case m1 = λα :: κ. m10, m2 = λα :: κ. m20. By the coinduction hypothesis, m10 ≡µ m20.
We derive m1 ≡µ m2 by Eq-ξ.
Case m1 = µ n1. Then

Ex(m1) = Ex(n1) Ex(m1) = Ex(n1 m1)

by the definition of Ex. From Ex(n1 m1) = Ex(m2), the coinduction hypothesis gives us
n1 m1 ≡µ m2, with which we derive m1 ≡µ m2 by Eq-µL-Neutral.
Case m1 = µ (λα. n1) is contractive. Then

Ex(m1) = Ex([α 7→ m1]n1).

From Ex([α 7→ m1]n1) = Ex(m2), the coinduction hypothesis gives us [α 7→ m1]n1 ≡µ m2,
with which we derive m1 ≡µ m2 by Eq-µL.
Case m1 = µ (λα. n1) is non-contractive. Then Ex(m1) = Ex(m2) = ⊥. By the
definition of Ex, m2 is non-contractive and we derive m1 ≡µ m2 by Eq-µ⊥.
Case m1 does not start with µ and m2 does. The argument is similar to the preceding 2
cases. We require m1 not to start with µ so that Eq-µR-Neutral and Eq-µR apply.

D.3. Type Argument Discovery

Given the connection between type equivalence and µ-equivalence, type argument discovery
becomes easy (Sec. 5.3.2): We need only normalize the input type and unroll top-level µ
using the Eq-µ rules until a non-recursive or non-contractive type is encountered.

Lemma 17. Let m1 ∈ NFµ∗ be a contractive Fµ∗ω type in β-normal form such that
Γ ` m1 :: κ. Then there exists m2 ∈ NFµ∗ computable from m1 such that m2 ≡µ m1,
Γ ` m2 :: κ, and m2 does not start with µ.

Proof. By Lemma 40, there exists m2 computable from m1 such that Ex(m1) = Ex(m2).
By Lemma 16, m1 ≡µ m2.

53

Theorem 46. Given any Fµ∗ω type σ, one can decide whether σ ≡ ι σ1 · · ·σk. If the
answer is yes, then one can compute ι, k, σ1, . . . , σk.

Proof. Compute the β-normal form m1 of σ. If m1 is non-contractive, then σ∞ is root-
active and cannot be Böhm-equivalent to any type of the form ι σ1 · · ·σk. If m1 is
contractive, then use Lemma 17 to compute m2 ≡µ m1 such that m2 does not start with
µ. By Theorem 14, m2 ≡ σ. Let n be the final operator of m2. Since recursive types in
Fµ∗ω have kind ∗, n is either a constant ι, a variable, or a lambda abstraction. If n = ι,
then m2 = ι σ1 · · ·σk, and we can read ι, k, σ1, . . . , σk from m2. If m2 is a variable or an
abstraction, then σ is not equivalent to any type of the form ι σ1 · · ·σk, for otherwise
there would be a conflict in the top-level construct of the common Böhm-redux of m2

and ι σ1 · · ·σk.

D.4. Type Equivalence Verification Algorithm

The promised gfps algorithm to verify µ-equivalence is listed in Fig. 18. It calls the
subroutine “support” listed in Fig. 19.
Here it suffices to think of “support” as a concrete subroutine. To understand the

formal definition of support and why gfps decides µ-equivalence, however, one would have
to go into the low-level machinary of coinduction (Definition 74 in Appendix F). Pierce
[45, chapter 21, definition 21.6.3] demonstrates the correctness of the gfps algorithm for
general coinductive relations, which applies directly to our µ-equivalence. We will not go
into details of the correctness argument.

The rest of the subsection investigates the termination behavior of gfps. Theorem 21.5.12
in Pierce [45] asserts the termination of gfps-like algorithms for all finite-state coinductive
relations. We will establish that µ-equivalence is finite-state, namely that the transitive
“support” of every pair of types is finite (Lemma 57). Here is the intuition of Pierce’s
theorem 21.5.12 in our scenario: The parameter X of gfps (Fig. 18) stays a subset of a
finite set throughout execution. If the algorithm does not return false, then all members
of X are eventually added to the set A, and subsequently deleted from X, leading to
termination with true. To prove that µ-equivalence is finite-state, one may simply apply
section 21.9 of Pierce [45] to the language NFµ∗ of β-normal forms. We will nevertheless
reproduce the argument for verification.

Definition 47 (reachability). A pair (mn,m
′
n) of NFµ∗ terms are reachable from the

pair (m0,m
′
0) if there exists NFµ∗ terms mn−1,m

′
n−1, . . . ,m1,m

′
1 such that

(mn,m
′
n) ∈ support(mn−1,m

′
n−1),

...
(m1,m

′
1) ∈ support(m0,m

′
0).

Definition 48 (finite state). The µ-equivalence relation is finite-state if the number of
pairs reachable from every pair of NFµ∗ terms is finite.

As stated above, we will show µ-equivalence to be finite-state. Appendix F explains
how µ-equivalence is related to reachability defined in terms of “support” (Fig. 19).

54

m1 ≡µ m2 if and only if gfps(∅, {(m1,m2)}) = true.

gfps(A,X) = if X = ∅, then true
else choose arbitrary x ∈ X

if x ∈ A, then gfps(A,X − {x})
else if support(x) is undefined, then false
else gfps(A ∪ {x}, X ∪ support(x)).

Figure 18: The gfps algorithm Pierce [45, Definition 21.6.3]. The function support is
defined in Fig. 19 and discussed in Examples 72 and 76.

support(x, x) = ∅
(if x = α or x = ι)

support(n1 m1, n2 m2) = {(n1, n2), (m1,m2)}

support(λα :: κ. m1, λα :: κ. m2) = {(m1,m2)}

support(µ n,m) = {(n (µ n),m)}

support(µ (λα :: ∗. n),m) = {([α 7→ µ (λα :: ∗. n)]n,m)}
(if µ (λα :: ∗. n) is contractive)

support(m,µ n) = {(m,n (µ n))}
(if m does not start with µ)

support(m,µ (λα :: ∗. n)) = {(m, [α 7→ µ (λα :: ∗. n)]n)}
(if m does not start with µ and
µ (λα :: ∗. n) is contractive)

support(µ (λα :: ∗. n1), µ (λα :: ∗. n2)) = ∅
(if µ (λα :: ∗. n1) and µ (λα :: ∗. n2)
are non-contractive)

support(m1,m2) = undefined
(otherwise)

Figure 19: The support function of G≡µ (Example 72), the generating function of µ-
equivalence ≡µ on NFµ∗.

55

m ≤ m (≤-Refl)

m ≤ m0

m ≤ λα :: κ. m0
(≤-Abs)

m ≤ n0

m ≤ n0 m0
(≤-App1)

m ≤ m0

m ≤ n0 m0
(≤-App2)

Figure 20: Congruence subterm rules.

m ≤↓ n (µ n)

m ≤↓ µ n
(≤↓-µ-Neutral)

m ≤↓ [α 7→ µ (λα :: ∗. n)]n

m ≤↓ µ (λα :: ∗. n)
(≤↓-µ)

Figure 21: Additional top-down subterm rules.

n (µ n) ≤↑ µ n (≤↑-µ-Axiom)

m ≤↑ n
m ≤↑ µ n

(≤↑-µ-Neutral)

m ≤↑ n
[α 7→ µ (λα :: ∗. n)]m ≤↑ µ (λα :: ∗. n)

(≤↑-µ)

Figure 22: Additional bottom-up subterm rules.

56

Definition 49 (subterm relations).

• The top-down subterm relation ≤↓ is defined inductively by the ≤-rules (Fig. 20)
together with the ≤↓-rules (Fig. 21).

• The bottom-up subterm relation ≤↑ is defined inductively by the ≤-rules (Fig. 20)
together with the ≤↑-rules (Fig. 22).

Note that the ≤↓- and ≤↑-rules have no contractiveness side condition. This is safe
because inductive relations permit only finite derivation trees, which cannot relate non-
contractive types to everything else.

Lemma 50. If (s1, s2) ∈ support(m1,m2), then

(s1 ≤↓ m1 ∨ s1 ≤↓ m2) ∧ (s2 ≤↓ m1 ∨ s2 ≤↓ m2).

Proof. By scrutinizing Fig. 19. Note that if m1 = µ n, then s1 = n (µ n) ≤↓ m1 is derived
via ≤-Refl followed by ≤↓-µ-Neutral; and if m1 = µ (λα :: ∗. n), then s1 ≤↓ m1 is
derived via ≤-Refl followed by ≤↓-µ.

Lemma 51. The top-down subterm relation ≤↓ is transitive.

Proof. Suppose m1 ≤↓ m2 ≤↓ m3. We will show m1 ≤↓ m3 by induction on m2 ≤↓ m3.
Case ≤-Refl. Trivial.
Case ≤-Abs: m1 ≤↓ m2 ≤↓ (λα :: κ. m30) such that m2 ≤↓ m30. By the induction
hypothesis, m1 ≤↓ m30 and we can derive m1 ≤↓ (λα :: κ. m30) by ≤-Abs.
Case ≤-App1 and ≤-App2. Similar to the case for ≤-Abs.
Case ≤↓-µ-Neutral: m1 ≤↓ m2 ≤↓ µ n such that m2 ≤↓ n (µ n). By the induction
hypothesis, m1 ≤↓ n (µ n) and we can derive m1 ≤↓ µ n by ≤↓-µ-Neutral.
Case ≤↓-µ: m1 ≤↓ m2 ≤↓ µ (α :: ∗. n) = m3 such that m2 ≤↓ [α 7→ m3]n. By the
induction hypothesis, m1 ≤↓ [α 7→ m3]n and we can derive m1 ≤↓ m3 by ≤↓-µ.

Lemma 52. If (s1, s2) is reachable from (m1,m2), then

(s1 ≤↓ m1 ∨ s1 ≤↓ m2) ∧ (s2 ≤↓ m1 ∨ s2 ≤↓ m2).

Proof. By induction on the lenght of the “support chain”, using transitivity of ≤↓.

Lemma 53. If m ≤↑ m′, then each free variable α of m occurs either free or bound in
m′.

Proof. By induction on m ≤↑ m′.
Case ≤-Refl. Obvious.
Case ≤-Abs: m′ = λβ :: κ. m0 such that m ≤↑ m0. If α = β, then α occurs bound in
m′. If α 6= β, then by the induction hypothesis, α occurs free or bound in m0.
Case ≤-App1: m′ = n0 m0 such that m ≤↑ n0. By the induction hypothesis, α occurs
free or bound in n0.

57

Case ≤-App2. Similar.
Case ≤↑-µ-Axiom: m′ = µ n and m = n m′. Then α occurs free either in n or in m′.
Case ≤↑-µ-Neutral: m′ = µ n and m ≤↑ n. By the induction hypothesis, α occurs
free or bound in n.
Case ≤↑-µ: m′ = µ (βα :: ∗. n) and m = [β 7→ m′]m0 for some m0 ≤↑ n. Then α occurs
free in either m0 or m′. In the former case, the induction hypothesis tells us that α occurs
free in n.

The next lemma is the most tricky of the subsection. Its proof follows closely the proof
of lemma 21.9.9 in Pierce [45].

Lemma 54. If s ≤↑ [α 7→ q]m then either s ≤↑ q, or else s = [α 7→ q]m′ for some
m′ ≤↑ m.

Proof. By induction on m.
Case m = ι or m = β 6= α. Then [α 7→ q]m = m. The relation s ≤↑ m is derivable only
by ≤-Refl, whence s = m. The lemma follows by choosing m′ = s = m.
Case m = α. Then [α 7→ q]m = q and s ≤↑ q by assumption.
Case m = λβ :: κ. m0. The relation s ≤↑ [α 7→ q]m is derivable by either ≤-Refl
or ≤-Abs. If it is ≤-Refl, choose m′ = m and we are done. If it is ≤-Abs, then
s ≤↑ [α 7→ q]m0. By the induction hypothesis, either s ≤↑ q or s = [α 7→ q]m′ for some
m′ ≤↑ m0. In the latter case, m′ ≤↑ m by ≤-Abs.
Case m = n0 m0. The relation s ≤↑ [α 7→ q]m is derivable by ≤-Refl, ≤-App1 or
≤-App2. The case for ≤-Refl is again easy. In the case for ≤-App1, s ≤↑ [α 7→ q]n0.
By the induction hypothesis, either s ≤↑ q or s = [α 7→ q]m′ for some m′ ≤↑ n0, and we
obtain m′ ≤↑ m by ≤-App1. The case for ≤-App2 is similar.
Case m = µ n. The relation s ≤↑ [α 7→ q](µ n) is derived by ≤-Refl, or ≤↑-µ-Axiom,
or ≤↑-µ-Neutral. In the first two cases, choose m′ = µ n and m′ = n (µ n) respectively,
and we obtain s = [α 7→ q]m′ with m′ ≤↑ m. In the last case, we have s ≤↑ [α 7→ q]n. By
the induction hypothesis, either s ≤↑ q or s = [α 7→ q]m′ for some m′ ≤↑ n. In the latter
case, m′ ≤↑ m by ≤↑-µ-Neutral.
Case m = µ (λβ :: ∗. n). The relation s ≤↑ [α 7→ q]m is derived by either ≤-Refl or
≤↑-µ. The case for ≤-Refl is again easy. In the case for ≤↑-µ, there exists s′ ≤↑ [α 7→ q]n
such that

s = [β 7→ [α 7→ q]m]s′.

By the induction hypothesis, either s′ ≤↑ q or s′ = [α 7→ q]s′′ for some s′′ ≤↑ n.
Suppose s′ ≤↑ q. By convention, β occurs neither free nor bound in q. By Lemma 53,

β is not free in s′. Then s = s′ ≤↑ q.
Suppose s′ = [α 7→ q]s′′ and s′′ ≤↑ n. Then

s = [β 7→ [α 7→ q]m][α 7→ q]s′′

= [α 7→ q][β 7→ m]s′′.

Choose m′ = [β 7→ m]s′′; we have m′ ≤↑ m by ≤↑-µ.

58

Lemma 55. If s ≤↓ m, then s ≤↑ m.

Proof. By induction on s ≤↓ m.
Case ≤-Refl, ≤-Abs, ≤-App1 or ≤-App2 . Immediate from the induction hypothesis.
Case ≤↓-µ-Neutral: m = µ n and s ≤↓ n (µ n). By the induction hypothesis,
s ≤↑ n (µ n), which is derivable by ≤-Refl, ≤-App1 or ≤-App2. If the rule was
≤-Refl, then s = n (µ n) and s ≤↑ m follows from ≤↑-µ-Axiom. If the rule was
≤-App1, then s ≤↑ n and the desired relation holds by ≤↑-µ-Neutral. If the rule was
≤-App2, then we obtain a derivation for s ≤↑ (µ n) as a sub-derivation of s ≤↑ n (µ n).
Case ≤↓-µ: m = µ (λα :: ∗. n) and s ≤↓ [α 7→ m]n. By the induction hypothesis,
s ≤↑ [α 7→ m]n. By Lemma 54,7 either s ≤↑ m or s = [α 7→ m]s′ such that s′ ≤↑ n. In
the latter case, we have s ≤↑ m by ≤↑-µ.

Lemma 56. For each m ∈ NFµ∗, only a finite number of NFµ∗ terms s satisfy s ≤↑ m.

Proof. The bottom-up subterm relation ≤↑ is defined via well-founded recursion on the
right-hand-side. Moreover, the rule deriving s ≤↑ m is completely determined by the
top-level construct of m except when m is an application, in which case we can choose
between ≤-App1 and ≤-App2. If m contains k application constructs, then there are at
most 2k derivation trees with a final conclusion of the form s ≤↑ m.

Lemma 57. For each pair (m1,m2) of NFµ∗ terms, the number of term-pairs reachable
from them is finite. In other words, µ-equivalence is finite-state.

Proof. For each pair (s1, s2) reachable from (m1,m2), the terms s1 and s2 must be chosen
from the finite number of bottom-up subterms of m1 and m2.

Having established that µ-equivalence is finite state, theorem 21.5.12 of Pierce [45]
implies that it is possible to decide whether m1 ≡µ m2 for all m1,m2 ∈ NFµ∗. We
proved type argument discovery to be decidable along the way (Theorem 46). The two
subroutines of the Fµ∗ω typechecker are now complete.

D.5. F µ∗
ω Types Have Regular Berarducci Trees

A consequence of µ-equivalence being finite state (Lemma 57) is that the Berarducci trees
of Fµ∗ω types have finitely many subtrees. It provides intuition why Fµ∗ω has decidable
typechecking (Sec. 5.3); we will prove it also.

Lemma 58. If s is a subtree of Ex(m), then there exists m′ ≤↓ m such that s = Ex(m′).

Proof. By strong induction on the smallest depth d of s inside Ex(m). If d = 0, then
s = Ex(m) and we choose m′ = m. If d > 0, case-split on m.
Case m = ι or m = α. This case is impossible. By the definition of Ex, s = Ex(m),
contradicting the assumption d > 0.

7In the substitution [α 7→ m]n, we assume the convention that α to occur neither bound nor free in m.
One can imagine α-converting all bound variables in m to be distinct from α before substitution.

59

Case m = n m0. Since s 6= Ex(m), either Ex(n) or Ex(m0) contains s as a subtree at a
depth smaller than d. For both cases, it suffices to invoke the induction hypothesis.
Case m = λα :: κ. m0. Similar to the previous case.
Case m = µ n. Then s is a subtree of Ex(m) = Ex(n) Ex(m). The shallowest occurence
of s cannot be in the operand Ex(m), for that would lead to the contradiction d < d.
Therefore s is a subtree of Ex(n). By the induction hypothesis, there exists m′ ≤↓ n such
that s = Ex(m′). We derive the desired relationm′ ≤↓ m by ≤-App1 and ≤↓-µ-Neutral.
Case m = µ (λα :: ∗. n). If µ (λα :: κ. n) is non-contractive, then Ex(m) = ⊥ and
d = 0, contradicting assumption. Therefore µ (λα :: ∗. n) is contractive. By successive
unrolling of top-level µ, we obtain a term n0 ≤↓ m such that n0 does not have the form
µ (λβ · · ·) and Ex(n0) = Ex(m). Use one of the other cases to discover n′0 ≤↓ n0 such
that s = Ex(n′0); by transitivity of ≤↓ we also have n′0 ≤↓ m.

Theorem 59. For every Fµω type σ, the Berarducci tree of σ∞ is regular.

Proof. Let m be the β-normal form of σ. Since σ∞ ⇒∞β⊥ Ex(m) and Ex(m) is irreducible
by⇒∞β⊥, the Berarducci tree of σ∞ is Ex(m). Let s be a subtree of Ex(m). By Lemma 58,
there exists m′ ≤↓ m such that s = Ex(m′). Since the choice of m′ is finite, so is the
choice of s.

E. Polytypism with Relevance Tracking

In this section, we continue the discussion about generating traversable functors with
macros from Sec. 6. We extend the polytypism theory of Hinze [29] to support traversable
functors, and to handle unsupported type constants and free type variables robustly.
We will show that Hinze’s main theorem continues to hold—that polytypic terms have
polykinded types. We close the section with some remaining issues for future investigation.

E.1. Motivation

We will make two extensions to Hinze’s theory of polytypism: the initial context and
relevance tracking. Here we motivate both extensions.

The initial context is added to support traversable functors. The type of traverse is not
polykinded in Hinze’s sense; it is polytypic only on line (4) below, where G occurs free, and
the first argument g : ApplicativeG would be bound at the term level already. Therefore
we will allow each polytypic value to transform the empty context into a designated initial
context. An example is shown immediately after Definition 60.

traverse〈τ〉 : ∀G :: ∗ → ∗. Applicative G→ (3)
∀α1α2. (α1 → G α2)→ τ α1 → G (τ α2) (4)

Relevance tracking is added to handle free variables and unsupported constants. In
Fig. 15, the macro traverse is only defined on types built without function arrows → or

60

universal quantifiers ∀. Moreover, each free type variable α of τ generates an ubound
term variable pα in traverse〈τ〉, and so the macro is only meaningful on closed types. Let

τ = λα :: ∗. {fst : α, snd : β}.

Then τ has a free variable β. Yet there is a meaningful traverse method for the functor
corresponding to τ :

traverse : ∀G :: ∗ → ∗. Applicative G→ ∀α1α2. (α1 → G α2)→ τ α1 → G (τ α2)

traverse = ΛG :: ∗ → ∗. λg : Applicative G.

Λα1α2 :: ∗. λpα : α1 → G α2. λx : {fst : α1, snd : β}.
g.call [β] [{fst = α2, snd = β}]

(g.call [α2] [β → {fst = α2, snd = β}]
(g.pure [α2 → β → {fst = α2, snd = β}] (λyz. {fst = y, snd = z}))
(pα x.fst))

(g.pure x.snd)

The rest of the section describes how to generate terms like traverse despite the free
variable β.

E.2. Polykinded Types and Polytypic Terms

Definition 60. An n-nary polykinded type Poly〈κ〉 is a family of types indexed by kinds
κ satisfying the following properties.

1. There exists a context Γ0, called the initial context, such that for every kind κ,

Γ0 ` Poly〈κ〉 :: κ→ · · · → κ︸ ︷︷ ︸
n times

→ ∗

2. Poly satisfies the following equation for all kinds κ1, κ2:

Poly〈κ1 → κ2〉 = λf1 · · · fn : κ1 → κ2. ∀α1 · · ·αn : κ1.

Poly〈κ1〉 α1 · · ·αn → Poly〈κ2〉 (f1 α1) · · · (fn αn).

The type macro Trav in Fig. 15 is a binary polykinded type with initial context

Γ0 = G :: ∗ → ∗, g : Applicative g.

Definition 61. Let V be a set of type variables. For each type τ and integer i, the type
τ |V=i is obtained from τ by systematically renaming every free occurrence of α to αi for
all α ∈ V .

61

Definition 62. Let Poly be an n-nary polykinded type with initial context Γ0 and let
V be a set of type variables. For each context Γ, the extended context Poly〈Γ | V 〉 is
defined inductively as follows.

Poly〈ε | V 〉 = Γ0

Poly〈Γ, α : κ | V 〉 = Poly〈Γ | V 〉, α : κ (if α /∈ V)
Poly〈Γ, α : κ | V 〉 = Poly〈Γ | V 〉, α : κ, α1 : κ, . . . , αn : κ, pα : Poly〈κ〉 α1 · · ·αn

(if α ∈ V)

We model polytypic values as a 3-place relation between kinding judgements, sets of
type variables, and terms. The set of type variables in the relation represents the variable
we care about. In the example in Appendix E.1, we care about α but not β. Although β
is free in τ , we should not, and in fact cannot, instantiate traverse on the abstract type β.

Definition 63. A polytypic term poly with n-nary polykinded type Poly is a 3-place
relations between kinding judgements, type variable sets, and terms. If (Γ ` τ :: κ, V, t) ∈
poly , then we write

poly〈Γ ` τ :: κ | V 〉 = t.

Where Γ and κ are unimportant, we will also write

poly〈τ | V 〉 = t.

Every polytypic term is defined inductively by the following default rules together with
an unspecified set of custeom rules.

α ∈ V
poly〈α | V 〉 = pα

(P-Var)

poly〈σ | V 〉 = t

poly〈µ σ | V 〉 = fix (t [µ σ |V=1] · · · [µ σ |V=n])
(P-Fix)

poly〈σ〉 = tσ poly〈τ〉 = tτ

poly〈σ τ〉 = tσ [τ |V=1] · · · [τ |V=n] tτ
(P-App)

poly〈Γ, α :: κα ` σ :: κ | V ∪ α〉 = t

poly〈Γ ` λα :: κα. σ :: κα → κ | V 〉 = Λα1 · · ·αn :: κα. λpα : Poly〈κα〉 α1 · · ·αn. t
(P-Abs)

Despite the notation poly〈τ | V 〉 = t, our polytypic terms are relations and not
necessarily functions. They are allowed to have terms t1 6= t2 such that poly〈τ | V 〉 = t1
and poly〈τ | V 〉 = t2 at the same time.
The the macro trav in Sec. 6 is a polytypic term with V = fv(τ). In fact, we obtain

Hinze’s notion of polytypic terms if we set V = fv(τ) and set the initial context Γ0 to the
empty context.

62

Definition 64. Let poly be a polytypic term of n-nary polykinded type Poly . A judgement
poly〈Γ ` τ :: κ | V 〉 = t is well-typed if

Poly〈Γ | V 〉 ` t : Poly〈κ〉 (τ |V=1) · · · (τ |V=n).

We will now show a result analogous to Theorem 1 in Hinze [29], that the polytypic
terms are well-typed. The main difference is in how variables are renamed in the type
arguments (τ |V=1) · · · (τ |V=n). In Hinze [29], all free variables are renamed. In our
extension, only relevant variables (i. e., members of V) are renamed. Nevertheless, the
proof remains similar.

Theorem 65. Let poly be a polytypic term of n-nary polykinded type Poly. If all custom
rules of poly derive well-typed judgements, then all members of poly are well-typed.

Proof. Suppose
poly〈Γ ` τ :: κ | V 〉 = t.

We will prove
Poly〈Γ | V 〉 ` t : Poly〈κ〉 (τ |V=1) · · · (τ |V=n)

by induction on poly〈τ | V 〉 = t. Since judgements produced by custom rules are
well-typed by assumption, we need only reason about the default rules.
Case P-Var: We have τ = α, and α : κ ∈ Γ, and α ∈ V . Then

t = pα,

Poly〈κ〉 (α|V=1) · · · (α|V=n) = Poly〈κ〉 α1 · · ·αn.

Since α ∈ V ,
pα : Poly〈κ〉 α1 · · ·αn ∈ Poly〈Γ | V 〉.

The desired typing judgement follows from T-Var.
Case P-Fix: We have τ = µ σ. Write

σi = σ|V=i, τi = τ |V=i = µ σi.

Then

t = fix (tσ [τ1] · · · [τn])

for some tσ such that
poly〈Γ ` σ :: κ→ κ | V 〉 = tσ.

By the induction hypothesis,

Poly〈Γ | V 〉 ` tσ : Poly〈κ→ κ〉 σ1 · · · σn.

By the definition of polykinded types,

Poly〈κ→ κ〉 σ1 · · · σn = ∀α · · ·αn : κ. Poly〈κ〉 α1 · · ·αn → Poly〈κ〉 (σ1 α1) · · · (σn αn).

63

By T-TApp and T-Eq,

Poly〈Γ | V 〉 ` tσ [τ1] · · · [τn] : Poly〈κ〉 τ1 · · · τn → Poly〈κ〉 (σ1 τ1) · · · (σn τn).

Since type equivalence is a congruence relation, from τi ≡ σi τi we can derive

Poly〈κ〉 τ1 · · · τn ≡ Poly〈κ〉 (σ1 τ1) · · · (σn τn).

By T-Eq,

Poly〈Γ | V 〉 ` tσ [τ1] · · · [τn] : Poly〈κ〉 τ1 · · · τn → Poly〈κ〉 τ1 · · · τn.

We may now apply T-App after T-Const for the fixed-point combinator fix to obtain
the desired typing judgement.
Case P-App: We have τ = ρ σ and

t = tρ [σ|V=1] · · · [σ|V=n] tσ

for some tρ, tσ such that

poly〈Γ ` ρ : κσ → κ | V 〉 = tρ, poly〈Γ ` σ : κσ | V 〉 = tσ.

Write

ρi = ρ|V=i, σi = σ|V=i, τi = τ |V=i = ρi σi.

By the induction hypothesis,

Poly〈Γ | V 〉 ` tρ : Poly〈κσ → κ〉 ρ1 · · · ρn,
Poly〈Γ | V 〉 ` tσ : Poly〈κσ〉 σ1 · · ·σn.

From there, it is possible to derive the desired conclusion by expanding Poly〈κσ → κ〉
and using T-TApp, T-App and T-Eq as appropriate.
Case P-Abs: We have τ = λα : κα. σ and

t = Λα1 · · ·αn :: κα. λpα : Poly〈κα〉 α1 · · ·αn. tσ

for some tσ such that

poly〈Γ, α : κα ` σ : κσ | V ∪ {α}〉 = tσ.

Write

τi = τ |V=i σi = σ|V ∪{α}=i
= λα : κα. σ|V=i, ≡ τi αi.

By the induction hypothesis,

Poly〈Γ | V ∪ {α}〉 ` tσ : Poly〈κσ〉 σ1 · · ·σn.

64

Applying T-TAbs and T-Abs several times, we obtain

Poly〈Γ | V 〉 `
Λα1 · · ·αn : κ. λpα : Poly〈κα〉 α1 · · ·αn. tσ :

∀α1 · · ·αn : κα. Poly〈κα〉 α1 · · ·αn → Poly〈κσ〉 σ1 · · ·σn

The desired typing judgement follows from T-Eq and the congruence property of type
equality, using the fact that σi ≡ τi αi.

E.3. Generating Traversable Functors

We generate traversable functors using the type macro Traverse and the term macro
traverse. They are defined using polykinded type Trav and polytypic term trav . The
definition of Trav is in Fig. 15 on page 32. The polytypic term trav is defined by custom
rules for record, variant and µ-types in Fig. 15 together with the following rule for
irrelevant positions.

V ∩ fv(τ) = ∅
trav〈Γ ` τ :: ∗ | V 〉 = g.pure [τ]

(P-Irrelevant)

The rule P-Irrelevant produce well-typed judgements, because

Trav〈∗〉 (τ |V=1) (τ |V=2) = Trav〈∗〉 τ τ ≡ τ → G τ.

The macro traverse invokes the polytypic term trav that does not care about any variable:

traverse〈τ〉 = ΛG :: ∗ → ∗. λg : Applicative G. trav〈τ | ∅〉

Instantiating τ to the example in Appendix E.1, the polytypic term trav starts to care
about α at its binding site, but never cares about β. We have trav〈β | {α}〉 = g.pure [β],
which eventually results in the expected code for traverse in Appendix E.1.

E.4. Discussion

In this subsection, we discuss the relation between polytypism and parametricity trans-
formation, and issues related to faithfulness, an indicator for whether the behavior of
polytypic values match user expection.

Parametricity Transformation

We have redeveloped polytypism specifically for Fµ∗ω , but polytypic values are in fact
definable in all pure type systems, as extensions to the parametricity transformation
[8, 9]. Since System Fµ∗ω is itself a pure type system extended by constants, one can
reformulate polytypism without relevance tracking in terms of Bernardy et al.’s reflecting
systems [9, definition 3.3]. The input language is taken to be Λµ, the type-level language
of Fµω (Fig. 3). To make it a pure type system, we add a top-level sort � such that

65

κ : � for all kinds κ. If we reflect � into ∗ in Fµω , then the parametricity transformation
provides exactly the default rules of polytypic terms (Definition 63). The parametricity
transformation is undefined for Λµ-constants that are not sorts (∗, →, ∀, {li}, 〈li〉); one
may supply custom rules for them to complete a polytypic term. In addition, the empty
context needs to transform to the initial context for macros like traverse. The abstraction
theorem of the parametricity transformation [9, theorem 3.12] can be extended to allow
custom rules and initial contexts, and it would coincide with the correctness theorem of
polytypism, namely that polytypic values have polykinded types.
While it is possible to make the paragraph above precise, we shall remain informal

and leave the details for another occasion. The reader is encouraged to work out the
formalism for themselves.

Faithfulness

Let us call a program transformation F faithful if it transforms equivalent programs into
equivalent programs and different programs into different programs:

s ≈0 t if and only if F (s) ≈1 F (t).

Faithfulness is a desirable property. If we view each polytypic term as a domain-specific
language for program generation, then faithfulness corresponds to watertight abstraction:
The user may carry out equational reasoning entirely within the source language, without
ever thinking about the generated code.
Faithfulness is a bi-implication. The forward direction is the preservation of certain

equivalence relations. The parametricity transformation preserves β-equivalence [8, 9],
which is cause to believe that forward faithfulness holds for Hinze’s polytypism as well.
Unfortunately, the custom rule P-Irrelevant destroys forward faithfulness. There are
two non-equivalent expansions of traverse〈σ〉 for the type σ below depending on whether
P-Irrelevant or P-App is used first. To restore forward faithfulness, we may have to
incorporate the laws of traversable functors.

σ = (λα :: ∗. {fst : α}) Int

The backward direction of faithfulness means that non-equivalent programs are trans-
formed into non-equivalent programs. Compilers typically care more about equalities than
inequalities, since they want to optimize by rewriting. We do not know any backward
faithfulness result about polytypism or the parametricity transformation.

F. Digression: Coinduction on Sets and Terms

So far we have defined coinductive relations in terms of inference rules, and carried out
coinductive arguments in the informal style advocated in Kozen and Silva [37]. In this
section, we descend into a lower level of abstraction, and view coinductive relations as the
greatest fixed points of monotone set functions. This low-level view allows us to explain
why Fig. 19 is called the support of ≡µ, and to give an alternative proof of Lemma 42, a
key step of the commuting diagram lemma.

66

F.1. Coinduction on Sets

We will recall the presentation of coinduction in chapter 21 of Pierce [45] and add a few
examples. Here are the definitions of monotone set functions, F -closure and F -consistency
from Pierce.

Definition 66 (monotonicity). Fix a set U as the universe of discourse. Let 2U be
the power set of U . A monotone set function F is a function from 2U to 2U such that
F (X) ⊆ F (Y) for all X,Y ⊆ U satisfying X ⊆ Y .

Definition 67 (closure, consistency and fixed points). Suppose X ⊆ U and let F be a
monotone set function.

1. X is F -closed if F (X) ⊆ X.

2. X is F -consistent if X ⊆ F (X).

3. X is a fixed point of F if F (X) = X. In other words, X is both F -closed and
F -consistent.

4. X is the least fixed point of F , written X = µF , if X is a fixed point of F such that
every other fixed point of F is a superset of X.

5. X is the greatest fixed point of F , written X = νF , if X is a fixed point of F such
that every other fixed point of F is a subset of X.

Recall Knaster-Tarski theorem (Thm. 21.1.4 in Pierce [45]) and the principle of coin-
duction (Cor. 21.1.8 in Pierce [45]).

Theorem 68 (Knaster-Tarski). Every monotone set function F has a greatest fixed point,
namely the union of all F -consistent sets.

Corollary 69 (principle of coinduction). If X is F -consistent, then X ⊆ νF .

Example 70. Coinductively defined terms are the greatest fixed points of their generating
functions. Let the universe of discourse U be the set of all syntax trees. Infinitary λ-
calculus Λ∞ is generated by the monotone function G∞Λ . We use L as the parameter of
G∞Λ because a collection of syntax trees form a language. Write C for the set of constants
ι, and V for the set of variables α. Note how components of G∞Λ (L) correspond to the
grammar rules defining Λ∞ (Fig. 7).

G∞Λ (L) = {⊥} ∪ C ∪ V (bottom, constants and variables)
∪ {λα. τ | α ∈ V and τ ∈ L} (abstraction)
∪ {σ τ | σ, τ ∈ L} (application)

Example 71. Let C be the set of constants and V the set of variables. Let the universe
of discourse U be the universal relation Λ∞ × Λ∞ on infinitary lambda terms. Let us
write down the generating function G∞β⊥ of Böhm-reduction (Definition 5). Since subsets

67

of U are relations on infinitary λ terms, we use the letter R for the argument of G∞β⊥.
Note how components of G∞β⊥(R) correspond to the coinduction rules of ⇒∞β⊥ (Fig. 11).
In this sense, generating functions are descriptions of coinductively-defined objects at a
lower level of abstraction.

G∞β⊥(R) = {(τ, x) | x ∈ {⊥} ∪ V ∪ C and τ ⇒∗β⊥ x}
(B-Bot, B-Const and B-B-Var)

∪ {(σ, λα. τ ′) | σ ⇒∗β⊥ (λα. τ) and (τ, τ ′) ∈ R} (B-Abs)

∪ {(σ, τ ′1 τ ′2) | σ ⇒∗β⊥ τ1 τ2 and (τ1, τ
′
1), (τ2, τ2)′ ∈ R} (B-App)

Example 72. Let U = NFµ∗ × NFµ∗, the universal relation on finite, Fµ∗ω types in
β-normal form. Let us write down the generating function G≡µ of µ-equivalence ≡µ
(Definition 12). As usual, we tag components of G≡µ (R) by corresponding inference rules
(Fig. 13).

G≡µ (R) = {(x, x) | x = α or x = ι} (EQ-TVar and EQ-Prim)

∪ {(n1 m1, n2 m2) | (n1, n2) ∈ R, (m1,m2) ∈ R} (Eq-AppCong)
∪ {(λα : κ. m1, λα : κ. m2) | (m1,m2) ∈ R} (Eq-ξ)
∪ {(µ n1,m2) | (n1 (µ n1),m2) ∈ R} (Eq-µL-Neutral)

∪

{
(m1, µ n2)

∣∣∣∣∣ m1 does not start with µ
(m1, n2 (µ n2)) ∈ R

}
(Eq-µR-Neutral)

∪

{
(µ (λα : ∗. n1),m2)

∣∣∣∣∣ µ (λα : ∗. n1) is contractive
([α 7→ µ (λα : ∗. n1)]n1,m2) ∈ R

}
(Eq-µL)

∪

(m1, µ (λβ : ∗. n2))

∣∣∣∣∣∣∣
m1 does not start with µ
µ (λβ : ∗. n2) is contractive
(m1, [β 7→ µ (λβ : ∗. n2)]n2) ∈ R

 (Eq-µR)

∪ {(m1,m2) | m1 and m2 are both non-contractive} (Eq-µ⊥)

A term relation is syntax-directed if each judgement between two concrete terms has a
unique rule deriving it, discovered usually by examining the top-level construct of the
terms. Invertible functions are the analogous concept for monotone set functions. The
support of an invertible function is analogous to the subroutine computing the last rule in
a judgement from concrete terms in a syntax-directed relation.

Definition 73 (invertibility). A monotone set function F is invertible if for all x ∈ U ,
either x /∈ F (U) or else there exists X ⊆ U such that x ∈ F (X), and we have X ⊆ Y
whenever x ∈ F (Y).

Definition 74 (support). Let F be an invertible monotone set function. The support of
F is a partial function from U to its powerset 2U mapping each x ∈ F (U) to the smallest
X such that x ∈ F (X). If no such X exists, then the support of F is undefined on x.

68

Example 75. The generating function G∞Λ of Λ∞ is invertible. Here is its support.

supportG∞Λ (x) =

∅ if x ∈ {⊥} ∪ C ∪ V,
{τ} if x = λα. τ,

{σ, τ} if x = σ τ.

Example 76. Böhm-reduction ⇒∞β⊥ is not invertible. However, µ-equivalence ≡µ is
designed so that its generating function G≡µ is invertible. Fig. 19 on page 55 shows its
support.

F.2. Recursively Defined Infinitary Terms and Böhm Reduction

We investigate the fixed points of contexts in infinitary lambda calculus. By contexts we
mean term transformations f of the form f(σ) = [α 7→ σ]τ . We will work toward a proof
that taking fixed points preserve Böhm reduction (Theorem 80). The result is used in the
alternative proof of the commuting diagram lemma, and is interesting on its own.

Definition 77. Write σ =n τ if the Λ∞ terms σ, τ are equal up to depth n.

Clearly =n is reflexive, symmetric and transitive. We shall take it for granted that
σ = τ if and only if σ =n τ for all n ∈ N; this is provable given a fixed encoding of
infinitary λ-terms (e. g., as a co-datatype with de Bruijn indices).

Lemma 78 (fixed point of infinite context). Let τ 6= α be an infinite term. There exists
a unique infinite term σ such that σ = [α 7→ σ]τ . Moreover, α /∈ fv(σ).

We call σ the fixed point of τ with respect to α and write

σ = Fixατ.

Proof. Let f be the function on Λ∞ such that f(ρ) = [α 7→ ρ]τ . Since τ 6= α,

f(ρ1) =n+1 f(ρ2) if and only if ρ1 =n ρ2 (5)

for all ρ1, ρ2 ∈ Λ∞ and n ∈ N. As a result,

fn(⊥) =n f
n+k(⊥)

for all n, k ∈ N. Moreover, ρ1 =n ρ2 implies f(ρ1) =n f(ρ2).
Define σ as the infinitary λ-term whose depth-i constructs agree with f i(⊥). Since α

does not occur free in f i(⊥) for all i, it does not occur free in σ. Moreover, σ =n f
m(⊥)

for all m ≥ n. Therefore for all n ∈ N,

f(σ) =n f(fn(⊥)) = fn+1(⊥) =n σ.

Since f(σ) =n σ for all n, we conclude that f(σ) = σ. This establishes the existence of
Fixατ .

For uniqueness, let σ′ be another fixed point of f . Then we have σ =n f
n(⊥) =n σ

′ for
all n ∈ N, which gives us σ = σ′.

69

Example 79. The notation Fixατ allows us to write the infinite tree µ∞ in Fig. 8
(page 21) formally:

µ∞ = λα. Fixβ(α β).

Theorem 80. Let σ, τ be infinitary lambda terms such that τ 6= α and σ ⇒∞β⊥ τ . Then
Fixασ ⇒∞β⊥ Fixατ .

Proof. By the principle of coinduction (Corollary 69), it suffices to construct a set
containing (Fixασ,Fixατ) that is consistent with respect to the generating function G∞β⊥
of Böhm reduction (Example 71). We will construct this set as the greatest fixed point of
a monotone set function G, defined below.
Let R0 be the relation such that

R0 = {(σ0, τ0) | σ0 ⇒∞β⊥ τ0 and τ0 6= α is a subterm of τ}.

G is the set function

G(R) =

([α 7→ ρ1]σ0, [α 7→ ρ2]τ0)

∣∣∣∣∣∣∣
(σ0, τ0) ∈ R0

(ρ1, ρ2) ∈ R
α /∈ fv(ρ1) ∪ fv(ρ2)

 .

G is clearly monotone. We will show that (Fixασ,Fixατ) is contained in νG and that
νG is G∞β⊥-consistent.

Containment. By the coinduction principle, it suffices to show that

S = {(Fixασ,Fixατ)}

is G-consistent. Choose

ρ1 = Fixασ, σ0 = σ,

ρ2 = Fixατ, τ0 = τ.

Since τ 6= α and σ ⇒∞β⊥ τ , we have (σ0, τ0) ∈ R0. By the definition of S, (ρ1, ρ2) ∈ S.
Thus

([α 7→ ρ1]σ0, [α 7→ ρ2]τ0) ∈ G(S).

However,

[α 7→ ρ1]σ0 = Fixασ, [α 7→ ρ2]τ0 = Fixατ,

whence S ⊆ G(S).

70

G∞β⊥-Consistency. We want to show νG ⊆ G∞β⊥(νG). Since νG ⊆ G(νG), every member
of νG has the form

([α 7→ ρ1]σ0, [α 7→ ρ2]τ0)

such that (ρ1, ρ2) ∈ νG and (σ0, τ0) ∈ R0. Let us case-split on τ0.
Case τ0 = ⊥, ι or β. We have τ0 6= α and σ0 ⇒∗β⊥ τ0. By Corollary 22,

[α 7→ ρ1]σ0 ⇒∗β⊥ [α 7→ ρ1]τ0

= τ0

= [α 7→ ρ2]τ0.

Applying B-Bot, B-Const or B-Var as appropriate, we obtain

([α 7→ ρ1]σ0, [α 7→ ρ2]τ0) ∈ G∞β⊥(X)

for whatever X ⊆ Λ∞ × Λ∞.
Case τ0 = λβ. τ00. By the definition of R0,

σ0 ⇒∗β⊥ λβ. σ00, σ00 ⇒∞β⊥ τ00.

We split the argument further into the subcase τ00 6= α and the subcase τ00 = α.

Subcase τ00 6= α. Then (σ00, τ00) ∈ R0 and

([α 7→ ρ1]σ00, [α 7→ ρ2]τ00) ∈ G(νG) = νG. (6)

By Corollary 22,
[α 7→ ρ1]σ0 ⇒∗β⊥ [α 7→ ρ1](λβ. σ00).

Using Eq. (6) as the 2nd condition of B-Abs in Example 71, we obtain

([α 7→ ρ1]σ0, [α 7→ ρ2](λβ. τ00)) ∈ G∞β⊥(νG).

Subcase τ00 = α. Then σ00 ⇒∞β⊥ α, and hence σ00 ⇒∗β⊥ α. We have to examine
(ρ1, ρ2) ∈ νG:

ρ1 = [α 7→ ρ11]ρ10, (ρ10, ρ20) ∈ R0,

ρ2 = [α 7→ ρ21]ρ20, (ρ11, ρ21) ∈ νG.

Note that α /∈ fv(ρ11) by the definition of G. By Property 19,

[α 7→ ρ1]σ00 = [α 7→ [α 7→ ρ11]ρ10]σ00

= [α 7→ ρ11][α 7→ ρ10]σ00.

Recall that σ00 ⇒∗β⊥ α. By Corollary 22,

[α 7→ ρ10]σ00 ⇒∗β⊥ [α 7→ ρ10]α

= ρ10 ⇒∞β⊥ ρ20,

71

therefore [α 7→ ρ10]σ00 ⇒∞β⊥ ρ20. Since (ρ10, ρ20) ∈ R0, we know ρ20 6= α is a subterm of
τ . Thus

([α 7→ ρ10]σ00, ρ20) ∈ R0.

This is enough to establish

([α 7→ ρ11][α 7→ ρ10]σ00, [α 7→ ρ21]ρ20) ∈ G(νG) = νG.

Recall that

[α 7→ ρ1]σ00 = [α 7→ ρ11][α 7→ ρ10]σ00,

[α 7→ ρ2]τ00 = ρ2 = [α 7→ ρ21]ρ20.

Thus we have, in fact,
([α 7→ ρ1]σ00, [α 7→ ρ2]τ00) ∈ νG.

Since [α 7→ ρ1]σ0 ⇒∗β⊥ (λβ. [α 7→ ρ1]σ00), B-Abs gives us

([α 7→ ρ1]σ0, λβ. [α 7→ ρ2]τ00) ∈ G∞β⊥(νG),

as desired.
Case τ0 = τ01 τ02. The argument is similar. Suppose σ0 ⇒∗β⊥ σ01 σ02 such that
σ0i ⇒∞β⊥ τ0i for i ∈ {1, 2}. Then the intermediate goal is

([α 7→ ρ1]σ0i, [α 7→ ρ2]τ0i) ∈ νG,

which is shown by splitting the subcases τ0i 6= α and τ0i = α.

F.3. Alternative Proof of a Step in the Commuting Diagram Lemma

We provide an alternative proof of Lemma 42, a key step in the commuting diagram
lemma. Using Theorem 80, we need not rely on structural properties of NFµ∗ any more.

Lemma 81. Let n 6= α be an infinite neutral term in NF∞. Then Fixαn is an infinite
neutral term.

Proof. Let f(σ) = [α 7→ σ]n. By Lemma 78, Fixαn = f i(Fixα) for all i ∈ N. Since n is
neutral and n 6= α, we know f i(σ) contains no β-redex at depth i. Thus Fixα contains
no β-redex at any depth. By Lemma 37, Fixα is an infinite neutral term.

Lemma 42. m∞ ⇒∞β⊥ Ex(m) for all m ∈ NFµ∗.

Alternative proof. By induction on m. We omit routine arguments and showing the
interesting cases, where m starts with µ.

72

Case m = µ n. We have m∞ = µ∞ n∞. By Example 79,

µ∞ n∞ ⇒β Fixα(n∞ α)

for some fresh name α. By the induction hypothesis, n∞ ⇒∞β⊥ Ex(n). Theorem 80 gives
us

Fixα(n∞ α)⇒∞β⊥ Fixα(Ex(n) α)

= Ex(n) Ex(µ n) = Ex(µ n).

Thus

m∞ ⇒β Fixα(n∞ α)⇒∞β⊥ Ex(m).

The desired relation m∞ ⇒∞β⊥ Ex(m) follows from Lemma 18.
Case m = µ (λα :: ∗. n) and m is contractive. Then n 6= α, n∞ 6= α and Ex(n) 6= α. By
Lemma 33,

Ex(m) = [α 7→ Ex(m)]Ex(n) = FixαEx(n).

By the induction hypothesis,
n∞ ⇒∞β⊥ Ex(n).

By Theorem 80,
Fixαn

∞ ⇒∞β⊥ FixαEx(n).

By transitivity of Böhm-reduction (Lemma 6), for m∞ ⇒∞β⊥ Ex(m) to hold, it suffices to
show

µ∞ (λα. n∞)⇒∞β⊥ Fixαn
∞.

Note from Example 79 that

µ∞ (λα. n∞)⇒β Fixα ((λα. n∞) α) .

Using the fact that (λα. n∞) α⇒β n
∞, we appeal to Theorem 80 and conclude

Fixα ((λα. n∞) α)⇒∞β⊥ Fixαn
∞.

Case m = µ (α :: ∗. n) and m is non-contractive. We know Ex(m) = ⊥ and m∞ 6= ⊥.
To prove m∞ ⇒∞β⊥ Ex(m), we need to show that m∞ is root-active. Since m is non-
contractive,

m∞ = µ∞ (λα1. (· · · (µ∞ (λαk. αi)) · · ·)).

Since µ∞ (λαj . m0)⇒∗β m0 whenever αj /∈ fv(m0), we have

m∞ ⇒∗β µ∞ (λαi. αi)⇒β Fixα((λαi. αi) α)

and hence
m∞ ⇒∞β⊥ Fixα((λαi. αi) α).

Since Fixα((λαi. αi) α) only β-reduces to itself, it is root-active. By Lemma 24, m∞ is
root-active as well.

73

References

[1] M. Abadi and M. P. Fiore. Syntactic considerations on recursive types. In
Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,
pages 242–252. IEEE Computer Society, 1996.

[2] A. Abel. A polymorphic lambda-calculus with sized higher-order types. PhD thesis,
Ludwig-Maximilians-Universität München, 2006.

[3] T. Altenkirch, C. McBride, and P. Morris. Generic programming with dependent
types. In Datatype-Generic Programming, pages 209–257. Springer, 2007. Revised
lectures of International Spring School SSDGP 2006.

[4] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575–631, 1993.

[5] F. Atanassow and J. Jeuring. Inferring Type Isomorphisms Generically. In D. Kozen,
editor, Mathematics of Program Construction, volume 3125 of Lecture Notes in
Computer Science, chapter 4, pages 32–53. Springer Berlin / Heidelberg, 2004.

[6] M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing, 10(4):265–289, 2003.

[7] A. Berarducci. Infinite-calculus and non-sensible models. In A. Ursini and
P. Agliano, editors, Logic and Algebra (Pontignano, 1994), volume 180 of Lecture
Notes in Pure and Applied Mathematics, pages 339–378. Marcel Dekker Inc., 1996.

[8] J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems.
In Foundations of Software Science and Computational Structures, pages 108–122.
Springer LNCS 6604, 2011.

[9] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free. Journal of Functional
Programming, 22(2):107–152, 2012.

[10] R. Bird and L. Meertens. Nested datatypes. In J. Jeuring, editor, Mathematics of
Program Construction, number 1422 in Lecture Notes in Computer Science, pages
52–67. Springer Berlin Heidelberg, 1998.

[11] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality
and subtyping. In P. d. Groote and J. R. Hindley, editors, Typed Lambda Calculi
and Applications, number 1210 in Lecture Notes in Computer Science, pages 63–81.
Springer Berlin Heidelberg, 1997.

[12] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundam. Inform., 33(4):309–338, 1998.

[13] B. Bringert and A. Ranta. A pattern for almost compositional functions. Journal of
Functional Programming, 18(5-6):567–598, 2008.

74

[14] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. In
Theoretical Aspects of Computer Software, pages 415–438. Springer, 1997.

[15] Y. Cai, P. G. Giarrusso, and K. Ostermann. System F-omega with equirecursive
types for datatype-generic programming. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
2016.

[16] F. Cardone and M. Coppo. Type inference with recursive types: Syntax and
semantics. Information and Computation, 92(1):48–80, May 1991.

[17] D. Colazzo and G. Ghelli. Subtyping recursive types in kernel Fun. In Proceedings
of Symposium on Logic in Computer Science, pages 137–146. IEEE, 1999.

[18] Ł. Czajka. A coinductive confluence proof for infinitary lambda-calculus. In
Rewriting and Typed Lambda Calculi, pages 164–178. Springer, 2014.

[19] E. de Vries and A. Löh. True sums of products. In Proceedings of the 10th ACM
SIGPLAN Workshop on Generic Programming, pages 83–94. ACM, 2014.

[20] D. Dreyer. A type system for recursive modules. In Proceedings of International
Conference on Functional Programming, pages 289–302. ACM, 2007.

[21] J. Endrullis and A. Polonsky. Infinitary Rewriting Coinductively. In N. A.
Danielsson and B. Nordström, editors, 18th International Workshop on Types for
Proofs and Programs (TYPES 2011), volume 19 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16–27. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2013.

[22] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive subtyping revealed. Journal
of Functional Programming, 12(06):511–548, 2002.

[23] J. Garrigue. Programming with polymorphic variants. In ML Workshop, volume 13.
Baltimore, 1998.

[24] N. Gauthier and F. Pottier. Numbering matters: First-order canonical forms for
second-order recursive types. In Proceedings of International Conference on
Functional Programming, pages 150–161. ACM, 2004.

[25] J. Gibbons. Design patterns as higher-order datatype-generic programs. In
Proceedings of the 2006 ACM SIGPLAN workshop on Generic programming, pages
1–12. ACM, 2006.

[26] J. Gibbons. Datatype-generic programming. In Spring School on Datatype-Generic
Programming. Springer LNCS 4719, 2007.

[27] J. Gibbons and B. C. d. S. Oliveira. The essence of the Iterator pattern. Journal of
Functional Programming, 19:377–402, 2009.

75

[28] N. Glew. A theory of second-order trees. In Programming Languages and Systems,
pages 147–161. Springer, 2002.

[29] R. Hinze. Polytypic values possess polykinded types. In Mathematics of Program
Construction, pages 2–27. Springer, 2000.

[30] S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez Yakushev. Generic views on
data types. In Mathematics of Program Construction, pages 209–234. Springer, 2006.

[31] G. Huet. Regular Böhm trees. Mathematical Structures in Computer Science, 8(06):
671–680, 1998.

[32] H. Im, K. Nakata, and S. Park. Contractive signatures with recursive types, type
parameters, and abstract types. In Automata, Languages, and Programming, pages
299–311. Springer, 2013.

[33] P. Jancar. Decidability of DPDA language equivalence via first-order grammars. In
Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science, pages 415–424. IEEE Computer Society, 2012.

[34] M. Jaskelioff and O. Rypacek. An investigation of the laws of traversals. In
Proceedings of the Fourth Workshop on Mathematically Structured Functional
Programming, volume 76, pages 40–49. Open Publishing Association, 2012.

[35] J. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997.

[36] E. A. Kmett. The lens package. http://hackage.haskell.org/package/lens.

[37] D. Kozen and A. Silva. Practical coinduction. Technical
Report http://hdl.handle.net/1813/30510, Computing and Information Science,
Cornell University, November 2012.

[38] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical design pattern
for generic programming. In Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, pages 26–37. ACM,
2003.

[39] C. McBride and R. Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, 2008.

[40] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Functional Programming Languages and
Computer Architecture, pages 124–144. Springer LNCS 523, 1991.

[41] N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In
Proceedings of the ACM SIGPLAN workshop on Haskell, pages 49–60. ACM, 2007.

76

http://hackage.haskell.org/package/lens
http://hdl.handle.net/1813/30510

[42] U. Norell. Dependently typed programming in agda. In Advanced Functional
Programming, pages 230–266. Springer, 2009. Revised lectures of the 4th
International School AFP 2002.

[43] N. Oury and W. Swierstra. The power of pi. In ACM Sigplan Notices, volume 43,
pages 39–50. ACM, 2008.

[44] F. Pfenning. Lecture notes on bidirectional type checking. In Carnegie Mellon
University course 15-312, “Foundations of programming languages,” fall 2004. http:
//www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf,
retrieved on 10 July 2015.

[45] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[46] F. Pottier. [TYPES] System F omega with (equi-)recursive types.
http://lists.seas.upenn.edu/pipermail/types-list/2011/001525.html,
2011. Retrieved on 2 July 2015.

[47] A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic
programming with fixed points for mutually recursive datatypes. In Proceedings of
International Conference on Functional Programming, pages 233–244. ACM, 2009.

[48] G. Sénizergues. Some applications of the decidability of DPDA’s equivalence. In
Machines, Computations, and Universality, pages 114–132. Springer, 2001.

[49] Z. Shao, C. League, and S. Monnier. Implementing typed intermediate languages. In
Proceedings of International Conference on Functional Programming, pages 313–323.
ACM, 1998.

[50] M. Solomon. Type definitions with parameters. In Proceedings of Symposium on
Principles of Programming Languages. ACM, 1978.

[51] C. Stirling. Deciding DPDA equivalence is primitive recursive. In Automata,
languages and programming, pages 821–832. Springer, 2002.

[52] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 21st International
Conference on Software Engineering, pages 107–119. ACM, 1999.

[53] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

77

http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://lists.seas.upenn.edu/pipermail/types-list/2011/001525.html

	Introduction
	Overview
	The Problems
	Our Approach
	Infinitary Type Equivalence
	DGP in Our Approach

	Related Work
	Synthesizing Isomorphisms
	Monomorphization
	Universe Construction
	Other Systems with Equirecursive Types
	Equirecursive Simple Types
	Equirecursive F Types
	Equirecursive K3 Types
	OCaml-style Equirecursive Types
	Equirecursive Fω Types

	System Fωμ
	Soundness and Type Checking of Fωμ
	Type Equivalence, Informally
	Equirecursive Simple Types
	Extending Equirecursive Types to System Fωμ

	Type Soundness
	Type Equivalence and Type-level Confluence
	Evaluation, Preservation and Progress

	Decidability of Type Checking First-order Recursive Types
	Deciding Type Equivalence
	Discovering Type Arguments for Type-level Constants

	From Type Functions to Traversable Functors
	Future Work
	Conclusion
	Basic Properties of Böhm-reduction
	Type Soundness of Fωμ
	Preservation
	Progress

	Algorithmic Typing Rules
	Decidability of Type Equivalence on Fωμ*
	Commuting Diagram Lemma
	Infinite Expansion Preserves Substitution
	Infinite Expansion Preserves Normal Forms
	Eliminating μ
	Infinite Expansion Preserves Böhm Reduction

	μ-Expansion Lemma
	Type Argument Discovery
	Type Equivalence Verification Algorithm
	Fωμ* Types Have Regular Berarducci Trees

	Polytypism with Relevance Tracking
	Motivation
	Polykinded Types and Polytypic Terms
	Generating Traversable Functors
	Discussion

	Digression: Coinduction on Sets and Terms
	Coinduction on Sets
	Recursively Defined Infinitary Terms and Böhm Reduction
	Alternative Proof of a Step in the Commuting Diagram Lemma

