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Abstract

Effect handlers are a promising way to structure effectful programs in a modular way. We present
the Scala library Effekt, which is centered around capability passing and implemented in terms
of a monad for multi-prompt delimited continuations. Effekt is the first practical implementation
of effect handlers that supports effect safety, effect polymorphism, effect parametricity, and effect
encapsulation which means that all effects are handled and effects cannot be accidentally handled
by the wrong handler. Other existing languages and libraries break effect encapsulation by leaking
implementation details in the effect type unless the user manually adds lifting annotations. We
describe a novel way of achieving effect-safety using intersection types and path dependent types.
We represent effect rows as the contravariant intersection of effect types, where an individual effect
is represented by the singleton type of its capability. Handlers remove components of the intersection
type. By reusing the existing type system we get subtyping and polymorphism of effects for free. The
effect system not only guarantees safety, but also guarantees modular reasoning about higher-order
effectful programs.

1. Introduction

Consider the following piece of code written in Scala and using our library Effekt. The
program uses two effect operations flip for nondeterministic coin flipping and raise for
exception raising:

def drunkFlip(amb: Amb, exc: Exc) = for {
caught ← amb.flip()
heads ← if (caught) amb.flip() else exc.raise("Too drunk")

} yield if (heads) "Heads" else "Tails"

This example shows a few things

• The program is written in monadic style using Scala’s for-comprehensions. Even
though the program uses multiple effects, all effectful code only uses one monad – a
variant of the continuation monad.

• The effect operations are methods on capabilities amb and exc which the method
drunkFlip receives as arguments. The semantics of the effect operations is thus
dependent on the corresponding implementations of Amb and Exc.
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We can, for instance, run the method drunkFlip with the handlers maybe and collect:

val res1: List[Option[String]] = run {
collect { amb ⇒ maybe { exc ⇒ drunkFlip(amb, exc) } }

}
//> List(Some(Heads), Some(Tails), None)

The collect handler enumerates all possible outcomes of the flip operation and collects
them in a list. The maybe handler returns None if the program raises an exception.

Swapping the two handlers changes the result type and the semantics:

val res2: Option[List[String]] = run {
maybe { exc ⇒ collect { amb ⇒ drunkFlip(amb, exc) } }

}
//> None

This illustrates an important feature of effect handlers. Programs that use effects are ag-
nostic of the concrete handlers and their order (Plotkin & Pretnar, 2009). This gives the
caller of the program and the implementer of the handlers more flexibility. Moreover, effect
handlers are powerful enough to express many different control-flow structures as libraries,
which otherwise have to be built into a language. Examples are async-await, cooperative
multitasking, iterators, exceptions, and many more (Wu et al., 2014; Leijen, 2016, 2017a;
Dolan et al., 2017).

In this paper, we present Effekt: a library for programming with effect handlers in
the language Scala. The combination of effect handlers with object oriented features en-
ables new modularization strategies, both for effectful programs and for effect handler
implementations. A previous version of Effekt was briefly introduced (Brachthäuser &
Schuster, 2017), but it lacked effect safety. The different aspects of our library design are
summarized in the type signature of the method drunkFlip that we’ve seen above:

Result Type︷ ︸︸ ︷ Effect Typing︷ ︸︸ ︷
def drunkFlip(amb: Amb, exc: Exc︸ ︷︷ ︸

Capability passing style

): Control[String, amb.effect & exc.effect]︸ ︷︷ ︸
Monad for Delimited Control

Our library design centers around the concept of capability passing. As we will see in the
remainder of this paper, capabilities in Effekt encapsulate three different things:

Capabilities contain Effect Implementations They give semantics to effect operations
(Section 2). In the example program drunkFlip we call effect operations as methods on
the capabilities amb and exc, for instance.

Capabilities contain Prompt Markers Effect operations can capture the continuation de-
limited by the corresponding handler. Programs written with our library have type Control
(Section 3), a monadic implementation of delimited control with first-class prompts (Dyb-
vig et al., 2007). Our capabilities contain such a prompt marker as a value member.

Capabilities contain Effect Labels Our capabilities contain a type member (amb.effect)
that we use as a label to guarantee effect safety (Section 4). We keep track of all used
capabilities by aggregating their effect members in an intersection type as the second type
parameter of Control.
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Our implementation of Effekt not only combines object oriented programming with
effect handlers but also is the first practical implementation of an effect system with all
of the following properties:

Effect Safety Our effect system asserts that all effects are handled. For example, we can
only call run on a program when all effects are handled and we reject programs like
run { amb.flip() }.

Effect Subtyping We use Scala’s support for subtyping of intersection types to implement
effect subtyping. A program with type Control[Int, exc.effect] can be used where a
program of type Control[Int, exc.effect & amb.effect] is expected.

Effect Polymorphism We use Scala’s support for polymorphism to express effect poly-
morphic functions like:

def map[A, B, E](ls: List[A], f: A ⇒ Control[B, E]): Control[List[B], E]

Here, map is polymorphic in the effects E used by function f.

Effect Parametricity Our effect system supports effect parametricity (Biernacki et al., 2018).
That is, looking at the type of map above we can guarantee that no implementation of map
can (accidentally or purposefully) handle effects E used by f.

Effect Encapsulation Our effect system supports effect encapsulation (Lindley, 2018) –
in variations also called abstraction safety (Zhang & Myers, 2019). Effectful higher order
functions that use and handle effects locally don’t leak these implementation details in their
types.

Existing implementations of languages with effect handlers, either completely lack a static
effect system – this includes MulticoreOCaml (Dolan et al., 2014), Eff (Bauer & Pret-
nar, 2015), embeddings of Eff in OCaml (Kiselyov & Sivaramakrishnan, 2016), and pre-
vious versions of Effekt in Scala (Brachthäuser & Schuster, 2017) and Java (Brachthäuser
et al., 2018) – or they don’t have sufficient support for effect polymorphism (Kammar
et al., 2013; Inostroza & van der Storm, 2018). Languages with effect systems like Exten-
sible Effects (Kiselyov et al., 2013), Koka (Leijen, 2014), Links (Hillerström et al., 2017),
and Frank (Lindley et al., 2017) in turn don’t support effect parametricity or require explicit
lifting annotations to encapsulate effects. Effekt requires no such manual lifting.

In summary, our contributions are:
• For our implementation, we build on the operational semantics of Dybvig et al. (2007)

but make it effect safe. To the best of our knowledge, we are the first to present
an effect safe implementation of multi-prompt delimited control. We achieve effect
safety by generalizing techniques of Launchbury & Sabry (1997) to nested regions
(Kiselyov & Shan, 2008) but using intersection types of abstract type members (Par-
reaux et al., 2018) instead of rank-2 types.

• We implement Effekt as a very thin layer on top of multi-prompt delimited continua-
tions. Importantly, we demonstrate how effect safety for effects and handlers follows
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from the newly gained effect safety for multi-prompt delimited continuations. The
resulting effect language can be seen as a lightweight embedding into Scala of the
language formally presented by Zhang & Myers (2019).

• We discuss interesting opportunities to explore type and effect safe modularization
of effectful programs, opened up by embedding Effekt into Scala, a language that
combines functional programming with object oriented programming.

The remainder of the paper is structured as follows. In Section 2 we give an overview of
programming with Effekt and show how to implement effect handlers. While we ultimately
aim to achieve an effect safe implementation of effect handlers, as an intermediate step
we present a monadic implementation of delimited control (Section 3) to then show how
to make it effect safe (Section 4). In Section 5, we express effect handlers as a very thin
library on top of delimited control and discuss novel extensibility properties that arise from
our embedding into Scala. Section 6 discusses related work and Section 7 concludes.

2. Programming with Effect Handlers in Effekt

To introduce programming with effect handlers in our library Effekt, we continue to use
the effects from the introduction as a running example. We will now see how to declare and
handle the exception and ambiguity effects. This section should give the reader a high-level
intuition for the usage of the library. The Control monad is discussed in Section 3 and the
effect system is described in Section 4. The examples of this section have been presented in
similar form in Koka (Leijen, 2017b) and previous versions of Effekt for Scala (2017) and
Java (2018). For syntactic convenience and better type inference, all code in this paper is
given in Dotty, the upcoming next version of the Scala programming language. The library
and the examples from this paper are available online:
https://github.com/b-studios/scala-effekt/tree/jfp

2.1. Exceptions

It might seem a bit contrived to implement exceptions using effect handlers in Scala since
they are already built into the language. However, exceptions are the simplest algebraic
effect but still provide a good overview over the involved concepts. There is also an
important difference to exceptions built into Scala: our effect system guarantees that all
effects are handled, which means that the exceptions we implement are checked. This is
not the case for Scala’s exceptions, they are unchecked.

Programming with effect handlers encourages modularity by separating the interface
of an effect (the effect signature) from its implementation (the effect handler). Figure 1a
declares the effect signature Exc, which inherits from the trait Eff:

trait Eff { type effect }

The library trait Eff provides us with the abstract type member effect. The signatures of
effect operations like raise tell us not only their return type, in this case Nothing. They
also taint the effect row, i.e. the right hand side in Result / Effects, by saying that they
use the abstract type member this.effect. We use effect types like this.effect only
for effect safety. They do not have any operational meaning attached to them and can be
completely erased at runtime.

https://github.com/b-studios/scala-effekt/tree/jfp
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trait Eff { type effect }
trait Exc extends Eff { def raise(msg: String): Nothing / effect }
trait Amb extends Eff { def flip(): Boolean / effect }

(a) Effect signatures for exception and ambiguity as traits extending library trait Eff.

def maybe[R, E](prog: (exc: Exc) ⇒ R / (exc.effect & E)): Option[R] / E =
// (1) delimit the scope of the handler
handle {

// (2) create handler instance / capability
val exc = new Exc with Handler() {

// (3) implement effect operations
def raise(msg: String) = use { resume ⇒ pure(None) }

}
// (4) provide handled program with capability
prog(exc) map { r ⇒ Some(r) }
// ^^^ (5) lift pure values into the effect domain

}

(b) Handler function for the exception effect.

def collect[R, E](prog: (amb: Amb) ⇒ R / (amb.effect & E)): List[R] / E =
handle {

val amb = new Amb with Handler() {
def flip() = use { resume ⇒ for {

xs ← resume(true)
ys ← resume(false)

} yield xs ++ ys }
}
prog(amb) map { r ⇒ List(r) }

}

(c) Handler function for the ambiguity effect.
Fig. 1. Using Effekt to declare and handle exception and ambiguity effects.

Let’s consider the following program which uses a capability for the exception effect:

def div(x: Int, y: Int)(exc: Exc): Int / exc.effect =
if (y == 0) exc.raise("y is zero") else pure(x / y)

For notational convenience, the result type of div makes use of the type alias:

type /[+Result, -Effects] = Control[Result, Effects]

In Scala, type constructors with two arguments can be used infix.
We can read the type signature of div as "provided with an exception capability exc,

div computes an integer using the capability exc". While mentioning exc twice in the
type signature might seem redundant, Effekt makes explicit what otherwise is conflated in
existing effect languages.

• Dynamic Effect Semantics. Passing exc as parameter gives the program (term-level)
access to the methods of Exc, in this case raise. Other languages with support for
effect handlers perform an implicit lookup for a handler for an effect operation like



ZU064-05-FPR effekt 21 January 2019 15:16

6 J. I. Brachthäuser, P. Schuster, and K. Ostermann

raise at runtime. In contrast, using Effekt, we explicitly pass effect handlers in the
form of capabilities as parameters or store them in fields.

• Static Effect Semantics. When we use the effect operations of the exc capability,
we have to mention its type member effect in the effect type. We will go into the
details of the effect system in Section 4 – for now it is enough to understand that
we guarantee effect safety by tracking all unhandled effects in the type parameter
Effects of Control.

2.1.1. Handling Exceptions

The effect signature Exc only specifies the available effect operations. To give them a
concrete interpretation we define a handler function with the following signature:

def maybe[R, E](prog: (exc: Exc) ⇒ R / (exc.effect & E)): Option[R] / E

Handler functions fulfill two purposes. Firstly, they provide capabilities (i.e. exc) to the
handled program. The handled program prog can use the capability as well as other effects
E to produce a result of type R. Secondly, handler functions remove the used effect (i.e.
exc.effect) from the effect type. Hence, the effect type exc.effect & E of the handled
program becomes E in the result type of maybe.

Operationally, the handler function interprets the effectful program which would com-
pute a result of type R (mnemonic for “return type”) into a new semantic domain of
type Option[R], the effect domain. As seen earlier, programs that raise exceptions will
be handled to return None. Programs that do not raise an exception return Some(result).

The handler is polymorphic in both the result type R of the handled program prog and in
all other effects E that the program might use and which are not handled by maybe.

Remark We interchangeably use the terminology capability and handler instance. While
“capability” puts a focus on the concept of entitling the holder to use an effect, “handler
instance” highlights the fact that handlers are implementations of effect signatures.

Figure 1b uses our Effekt library to give the implementation of the handler function maybe.
The handler instance exc extends both the effect signature Exc, as well as the library
trait Handler. To implement the effect operations, handlers are able to utilize the instance
method use provided by the library trait Handler. Specialized to this example, use has the
type:

def use[A](body: (A ⇒ Option[R] / E) ⇒ Option[R] / E): A / exc.effect
// ^^^^^^^^^^^^^^^^^^^^
// the continuation

Calling use in our implementation of raise captures the continuation and binds it to the
identifier resume in the provided body. We discard the continuation and immediately return
None. Discarding the continuation corresponds to the expected semantics of exceptions
unwinding the stack.

The call to the library function handle delimits the scope of the continuation captured
with use. That is, the continuation captured by the corresponding call to use contains all
frames up to and including the call to handle. While at runtime prog might arbitrarily
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install delimiters before calling raise, the connection between the two functions use and
handle is statically scoped. We know that in all calls to exc.raise the continuation cap-
tured by use will be delimited by this lexically enclosing handle.

2.1.2. Return Clauses

Delimiting the scope with handle requires the result type of the passed program to match
the effect domain of the handler – that is Option[R] in our case. For this reason, we are
mapping over the result of the program to wrap it in Some. In other languages like Koka, Eff
or Frank this lifting of the result type into the effect domain is typically performed by return
clauses. In these languages, in addition to the implementation of effect operations every
handler also has to implement the return clause (called unit in the following example),
similar to:

object exc extends Exc with Handler() {
def unit(r: R): Option[R] / E = pure(Some(r))
def raise(msg: String) = use { resume ⇒ pure(None) }

}

This additional abstraction exists both for historical and technical reasons. Historically,
algebraic effect handlers were conceived as a fold over the tree of computation opera-
tions (Plotkin & Pretnar, 2009). Return clauses are required to lift pure values into the
domain of computations. It is certainly possible to express return clauses in terms of
mapping over the result like:

handle { object h extends Handler() {...}; prog(h) flatMap { h.unit } }

However, until very recently, in languages like Koka one couldn’t generally make this
transformation since effect operations used in the return clause might accidentally be
handled by the same handler that has the return clause (Leijen, 2018; Lindley, 2018).
This is not an issue in Effekt, since the connection between handler and operations is
established explicitly via capability passing, instead of performing a runtime lookup to the
closest handler for a given effect signature. We think that it is an advantage of capability
passing that return clauses are not required to be part of the user interface of handlers while
maintaining the same expressiveness.

2.2. Ambiguity

Our interpretation of the exception effect discards the continuation of the program when it
encounters a raise and immediately returns None. Not only do we have the option to dis-
card the continuation, we can also call it multiple times as the next example will illustrate.
Again, Figure 1a first declares the effect signature of the Amb effect. The implementation of
the handler function collect in Figure 1c handles the ambiguity effect changing the result
type of the program from R to List[R]:

def collect[R, E](prog: (amb: Amb) ⇒ R / (amb.effect & E)): List[R]

To implement the flip operation used in the introductory example and enumerate all
possible results we call the continuation twice and concatenate the results of both calls.
The type of the continuation here is resume: Boolean ⇒ List[R] / E, so calling it with
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true and false gives us lists of type List[R]. We concatenate both lists. After providing
the program prog with the capability amb, we lift the result type R to the effect domain
List[R] by wrapping the result in a singleton list.

2.3. The Effekt Library

In this section, we have encountered the basic concepts of programming with effect han-
dlers in Effekt. While all effectful computation happens in one monad (Control), program-
ming with effect handlers encourages a modularization into the three components effect
signatures, effectful programs, and effect handlers.

Effect signatures like Exc are interfaces containing methods marked as effectful with an
abstract type member effect. This abstraction is very powerful – not only is the implemen-
tation of the method left abstract, but we also leave open which effects an implementation
might use. In a concrete implementation, all effectful methods share the type member
effect much like all methods of an object share the private state.

Effectful programs use effect operations by explicit capability passing. This has a num-
ber of advantages: in the presence of multiple instances of the same effect it is straightfor-
ward to pick a specific one; there is no runtime overhead for looking up the right handler
implementation – calling an effect operation is just a dynamic dispatch; capability passing
guarantees effect encapsulation (Lindley, 2018), that is, we avoid the problem of effects
being accidentally handled. The downside of explicit capability passing is its verbosity.
Like we did in previous versions of Effekt for Scala (Brachthäuser & Schuster, 2017), we
could hide most of it using implicit parameters and implicit function types. However, in
this paper we refrain from doing so to reduce cognitive overhead and focus on the aspect
of effect safety.

Effect handlers provide semantics to effect operations. We need to distinguish three
different aspects of an effect handler. The handler function, like collect, is a higher order
function that provides an amb capability and removes the amb.effect from the effect type
of the handled program. The handler implementation is a class implementing the effect
signature. In our above example the Amb interface is implemented by an anonymous inner
class new Amb with Handler() { ... }. The handler instance, like amb, is an instance of
the handler implementation.

The remainder of this paper iterates the running example of this Section and introduces
all mentioned types and library functions in three steps: Section 3 gives an overview over
the underlying implementation of delimited control and shows how programming with
our interface for delimited control is already very close to programming with (algebraic)
effects. Section 4 then establishes effect safety for this implementation of delimited control
and introduces the abstraction of effect signatures. Finally, Section 5 introduces the rest of
the functions and types (e.g. handle and Handler) that make it possible to program in the
style of effects and handlers.
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3. Delimited Control

Effekt implements effect handlers in terms of a monad for delimited control. In this section,
we present a simplified version of our implementation of this monad as a specialization of
the one presented by Dybvig et al. (2007).

“Effect handlers are to delimited continuations as structured programming is to goto” –
Andrej Bauer (Dagstuhl Seminar, March 2018).

For multiple decades control operators like call/cc have been used to program with
control effects. Similar to goto, which can be understood as undelimited, local continu-
ation (Landin, 1965; Kennedy, 2007), call/cc captures the (global) undelimited contin-
uation. Again like goto, while being very expressive, programs written with the control
operator call/cc tend to be fragile, hard to understand and maintain.

Recently, in disguise, control operators have found their way into mainstream program-
ming languages as async/await, generators and other specialized solutions. At the same
time, the programming languages research community found new interest in control ef-
fects in the form of algebraic effects and handlers. Delimited control operators and effect
handlers are closely related. In the literature, effect handlers are often introduced as a struc-
tured way to program with delimited continuations (Kammar et al., 2013; Leijen, 2017b).
It also has been established practically (Kiselyov & Sivaramakrishnan, 2016) as well as
theoretically (Forster et al., 2017) that certain forms of delimited continuations can express
certain forms of algebraic effect handlers. It is natural to base an implementation of effects
and handlers on delimited continuations, reusing existing work on the latter.

We believe the regained interest comes from four important generalizations and im-
provements over call/cc:

1. generalizing from undelimited to delimited continuations
2. generalizing from one control operator to a family of control operators
3. establishing answer type safety of control operators
4. establishing effect safety of control operators

From an engineer’s perspective, each of these improvements helps to write programs in a
modular way making them easier to extend and making it easier to reason about parts of a
program in isolation.

The version of our monad for delimited control that we introduce in this section is answer
type safe, but it is not effect safe. In the next section, we show how to establish effect safety.

3.1. Delimiting Continuations

The following example program uses the control operator shift0 (Kammar et al., 2013) and
delimiter reset:

1 + reset { 10 + shift0 { λk. k(k(100)) } }

The control operator shift0 captures the continuation and binds it to k. The continuation
is delimited: only the evaluation context up to the enclosing reset is captured and thus the
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continuation corresponds to 10 + �. This example reduces in the following steps:

1 + reset { 10 + shift0 { λk. k(k(100)) } }
1 + k(k(100)) where k = λx. reset { 10 + x }
1 + k(reset { 10 + 100 })
1 + k(110)
1 + reset { 10 + 110 }
1 + 120
121

The continuation k does not contain the frame 1 + �, which is outside of the delimiting
reset. The body of the continuation k is again delimited by reset.

3.1.1. The Control-monad

In previous sections, we used a monad Control[+Result, -Effects] that is both answer-
type safe and effect safe. To focus on the operational semantics of delimited control, in this
section we start with a simpler variant Control[+Result] that has the same operational
semantics, is answer-type safe but not effect safe. One can view Control as an embedding
of a language with control effects into Scala. Our monad Control[+Result] is very close
to the monad for multi-prompt delimited control by Dybvig et al. (2007), but we specialize
the exposed interface to better fit effect handlers. While Dybvig et al., present a very
general framework that allows for the implementation of all sorts of control operators, we
build on shift0 as our control operator of choice which means that the body of the captured
continuation is always delimited by a reset. As highlighted by Kammar et al. (2013),
shift0 matches the semantics of deep handlers where the same effect is already handled
in the continuation. As we will see later, shift0 has a very natural type in the presence of
multiple delimiters (Schuster & Brachthäuser, 2018). It additionally avoids the problem of
accumulating delimiters observed by Dybvig et al. (2007).

Example 1

The above direct style program translates to Scala using our Control monad as follows:

val ex: Control[Int] = reset { p ⇒
shift0(p) { k ⇒ k(100) flatMap k } map { 10 + _ }

} map { 1 + _ }

Our delimiter reset introduces a fresh prompt p. Our control operator shift0 takes a
prompt as a parameter that allows us to select which reset we want to shift to. The current
example only uses one prompt p but we will shortly see how to utilize this additional
expressivity.

Figure 2 defines the interface of our monad for delimited control. As usual, we embed
a pure value into the monad with pure and we sequence effectful computations with
flatMap. This enables us to write effectful programs in an imperative style via Scala’s
for-comprehensions. In addition to being a monad, the type Control provides us with three
operations. Using run we execute a program with control effects that computes a value
of type A to obtain that value. The operation reset { p ⇒ PROG } delimits the control
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trait Control[+A] {
def flatMap[B](f: A ⇒ Control[B]): Control[B]
def map[B](f: A ⇒ B): Control[B]

}

def pure[A](value: A): Control[A]
def run[A](program: Control[A]): A

trait Prompt[Result] { }
def reset[R](program: Prompt[R] ⇒ Control[R]): Control[R]

type CPS[A, R] = (A ⇒ R) ⇒ R
def shift0[A, R](prompt: Prompt[R])(body: CPS[A, Control[R]]): Control[A]

Fig. 2. The control monad without effect typing.

effects in the provided program PROG. It introduces a fresh prompt marker p and provides it
to its argument. The control operator shift0(p) { k ⇒ PROG } receives a prompt marker
p and a body k ⇒ PROG. It captures the current continuation up to the corresponding reset
and passes the continuation to the body.

3.2. Multiple Prompts and Families of Control Operators

Every call to reset introduces a fresh prompt p, or in other words, each prompt p labels the
corresponding reset. This gives rise to a dynamic number of control operators shift(p),
one for each prompt created by a reset. The following example illustrates the use of
multiple resets:

Example 2

We use reset twice, introducing two different prompts p1 and p2.

val ex2: Control[Int] = reset { p1 ⇒
reset { p2 ⇒

shift0(p1) { k ⇒ pure(21) }
} map { if (_) 1 else 2 }

} map { 2 * _ }

The captured continuation k contains the program segment delimited by prompt p1. It
corresponds to the evaluation context if (reset { λp2.� }) 1 else 2. In this example the body
of shift0 discards the continuation k and immediately returns 21. Hence, run { ex2 }
evaluates to 42.

3.3. Answer Type Safety

Operationally, shift0(p)(k ⇒ PROG) replaces the corresponding reset by the body PROG.
The return type of the body has to be the same as the answer type at the reset. In our setting
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of multiple first-class prompts we guarantee this by following Dybvig et al. (2007) and
parametrizing prompts over the answer type R (Figure 2). In Example 2, the two prompts
thus have types p1: Prompt[Int] and p2: Prompt[Boolean].

In the type of reset we make sure that three types coincide to be type R: the answer type
of the created prompt, the result of the given program, and the return type of reset.

In the type of shift0 we then use the answer type of the given prompt to make sure that
the return type of the continuation and the return type of the given body agree with the
answer type expected at the reset that originally created the prompt p.

The continuation in Example 2 thus has type k : Boolean ⇒ Control[Int] and the
body of the shift is expected to return Control[Int]. Answer type safety is especially
important in the presence of multiple prompts. Each reset might introduce a prompt with
a different answer type. Shifting to a reset with the wrong type should be ill-typed. For
instance shifting to p2 would render the example type incorrect since this would require
the body of shift to return a computation of type Boolean, not Int.

3.4. Programming with Delimited Control

To highlight how programming with effect handlers is structured programming with delim-
ited control, we express our running example directly in terms of multi-prompt delimited
control.

Example 3

Figure 3 translates our running example from Figure 1 to directly use control effects. Let
us assume the type aliases for effectful functions with the signatures of flip and raise
(Figure 3a). The user program from the introduction then carries over almost unchanged.

def drunkFlip(raise: Exc, flip: Amb): Control[String] = for {
caught ← flip()
heads ← if (caught) flip() else raise("Too drunk")

} yield if (heads) "Heads" else "Tails"

The function drunkFlip now takes effectful functions, or if you will effect operations,
raise and flip directly as parameters.

We implement what could be viewed as handlers for raise (Figure 3b) and flip (Fig-
ure 3c) as higher order functions that construct implementations of effect operations and
pass them to the given program. They also change the result type R to the effect domain
Option[R] and List[R] respectively, just as we have previously seen. Following this pat-
tern to directly implement effect handlers in terms of delimited control shows that handler
functions encapsulate three aspects of effect handling in one module:

1. the handler function uses reset to delimit the scope of the captured continuation;
2. it locally uses the fresh prompt introduced by reset to implement the effect opera-

tions in terms of shift0 – the effect operations close over the prompt and are thus
the only way to capture the continuation;

3. it finally lifts the return type of the handled function R into the effect domain which
makes it the answer type of the reset.
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type Amb = () ⇒ Control[Boolean]
type Exc = String ⇒ Control[Nothing]

(a) Effect signatures for exception and ambiguity as type aliases for effectful functions.

def maybe[R](prog: Exc ⇒ Control[R]): Control[Option[R]] = reset { p ⇒
val raise: Exc = msg ⇒ shift0(p) { resume ⇒ pure(None) }
prog(raise) map { x ⇒ Some(x) }

}

(b) Handler function for the exception effect.

def collect[R](prog: Amb ⇒ Control[R]): Control[List[R]] = reset { p ⇒
val flip: Amb = () ⇒ shift0(p) { resume ⇒ for {

xs ← resume(true)
ys ← resume(false)

} yield xs ++ ys }

prog(flip) map { x ⇒ List(x) }
}

(c) Handler function for the ambiguity effect.
Fig. 3. Using answer type safe delimited control to declare and handle exception and ambiguity

effects.

Grouping these aspects of effect handling in one module, it is possible to locally reason
about type safety. The implementation of raise is only safe because we statically know
from the type of p: Prompt[Option[R]] that the answer type expected at the reset is
Option[R]. Likewise, in collect we use the fact that we statically know that the answer
type in the body of shift0(p) is List[R] to safely concatenate the results of the two calls
of the continuation resume.

Just as in the introduction, we can use both handler functions in different order to run
the program, getting different results of different type.

val res1: List[Option[String]] = run {
collect { flip ⇒ maybe { raise ⇒ drunkFlip(raise, flip) }}

}
val res2: Option[List[String]] = run {

maybe { raise ⇒ collect { flip ⇒ drunkFlip(raise, flip) }}
}

The operations raise and flip are first-class functions and close over the fresh prompts
p that we introduced with reset. However, if they escape the scope of the corresponding
handler function, calling them will lead to a runtime exception. The next section addresses
this source of unsafety among others.
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4. The Effect System

In the previous section, we have seen a version of Control that has a type parameter Result.
By also indexing Prompt with a type parameter Result, we statically track answer types
and guarantee that capturing and calling the continuation is type safe. However, as we will
see shortly, this version of Control is not effect safe and using a prompt outside of the
dynamic scope of the corresponding reset leads to a runtime error. We identify two ways
to leave the scope of reset.

Leaving the scope by returning We leave the scope of reset by returning from it. In this
case it is possible to leak the prompt introduced by reset either through the heap

var o: Prompt[Unit] = null
val problem1 = run {

for {
_ ← reset { prompt ⇒ p = prompt; pure(()) }
_ ← shift0(p) { resume ⇒ pure(()) } // Exception: Prompt not found

} yield ()
}

or by simply returning it:

val problem2 = run {
for {

p ← reset { p ⇒ pure(p) }
_ ← shift0(p) { resume ⇒ pure(()) } // Exception: Prompt not found

} yield ()
}

Both sources of leakage can also occur indirectly through values that close over the prompt,
like the effect operations in the previous section. Prompts might even leave the scope of
the enclosing run to then be used in the scope of a different run. Dybvig et al. (2007) use
rank-2 types to prevent this particular source of error, but leave others to future work.

Leaving the scope by shifting We can also leave the scope of reset by means of control
effects.

val problem3 = run {
reset { p ⇒

shift0(p) { resume ⇒
shift0(p) { resume ⇒ pure(()) } // Exception: Prompt not found

}
}

}

Since shifting to a prompt removes the enclosing reset, shifting a second time inside of the
body of shift0 will result in a runtime error. The captured continuation is not delimited
anymore. Danvy & Filinski (1990) operationally prevent this kind of runtime error by
leaving the reset behind. However, the delimiter can also be removed from the stack by
continuation capture:
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type Pure = Any
type /[+A, -E] = Control[A, E]

trait Control[+A, -Effects] {
def flatMap[B, E](f: A ⇒ B / E): B / (E & Effects)
def map[B](f: A ⇒ B): B / Effects

}

def pure[A](value: A): A / Pure
def run[A](c: A / Pure): A

trait Prompt[Result, Effects]
def reset[R, E](prog: (p: Prompt[R, E]) ⇒ R / (p.type & E)): R / E

type CPS[A, R] = (A ⇒ R) ⇒ R
def shift0[A, R, E](p: Prompt[R, E])(body: CPS[A, R / E]): A / p.type

Fig. 4. The control monad with effect typing.

val problem4 = run {
reset { p1 ⇒ reset { p2 ⇒

shift0(p1) { resume ⇒
shift0(p2) { resume ⇒ pure(()) } // Exception: Prompt not found

}
}}

}

We now introduce an effect system that rules out the above four problem programs, pre-
vents the use of escaped prompts and guarantees effect safety. To the best of our knowledge,
Effekt is the first type and effect safe embedding of multi-prompt delimited control. The
underlying problem our effect system solves is a very general one: we need to restrict the
lifetime of a resource (prompts in our case) to a certain dynamic region (reset in our
case). This problem occurs in the domain of region based resource management (Kiselyov
& Shan, 2008), object capabilities (Haller & Loiko, 2016), delimited control (Dybvig
et al., 2007), macro hygiene (Parreaux et al., 2018) as well as with prompt based im-
plementations of effect handlers (Brachthäuser & Schuster, 2017).

4.1. Tracking and Delimiting Prompt Usage

Our effect system builds on the idea of tracking the set of prompts used by a program in the
type of the program. To enable tracking of effects, Figure 4 thus defines our final version
of Control with a second type parameter Effects. We represent prompts on the type-level
by their singleton types and we use Scala’s intersection types to describe a set of prompts.
Crucially, we also generalize the answer type – it is now effectful: prompts track both, the
expected return type and the set of prompts in scope at the corresponding reset.

As an example, assuming prompts p1, p2, and p3 we write the type of the effectful
program that uses prompts p1 and p2 to compute an integer as
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val prog1: Control[Int, p1.type & p2.type]

Here, p1.type is the singleton type of the prompt p1 and p1.type & p2.type is an intersec-
tion type. In general, the intersection of singleton types might not be inhabited, but this is
irrelevant for our use case, since we only use the intersection type of prompts as a phantom
type to track used effects.

To support effect subtyping, the type parameter Effects of Control is marked as con-
travariant.

val prog2: Control[Int, p1.type & p2.type & p3.type] = prog1

The above assignment is type correct since we have by subtyping:

p1.type & p2.type & p3.type <: p1.type & p2.type

We define type Pure = Any, where Any is the top of the Scala subtyping lattice. Pure
programs have an effect type Pure since they do not use any prompts. By contravariance
they are a subtype of effectful programs that use a non-empty intersection of prompt types.

We do not prevent leakage of prompts. Instead, we taint the effect type whenever we
perform shift0 on a prompt. This is reflected in the return type of shift0 (Figure 4). The
type A / p.type indicates the use of the prompt p on the type level.

While we do not prevent leakage, the type of run asserts that only pure programs can
be executed. That is, all prompts have to be delimited and the intersection has to be
empty (Pure). Conceptually, this is similar to how rank-2 types can be used to enable type
safe monadic regions in Haskell (Launchbury & Sabry, 1997; Kiselyov & Shan, 2008).
However, since rank-2 types are not well-supported in Scala, we use singleton types for
ergonomics and better type inference.

To guarantee safety, we have to make sure that the only way to remove a prompt type
from the intersection is by delimiting the program with reset. Our reset has the following
signature:

def reset[R, E](prog: (p: Prompt[R, E]) ⇒ R / (p.type & E)): R / E

Here, prog has a dependent function type: the return type is (path) dependent on its value
parameter p. Different calls to reset lead to different singleton types. Hence, only the
reset that introduced a prompt can remove its very own singleton type from the effect type.
Again, this is close to rank-2 types, but moves the universal quantification from the type
level to the term level. This excludes problematic programs like problem1 and problem2

from above.

Remark In Scala, two (path-dependent) singleton types are equal if and only if their prefix
paths are stable and they can be unified (Odersky & Zenger, 2005b). Informally, a path is
stable if it does not contain a mutable component. This way we prevent leakage via mutable
references as in problem1.

4.2. From Answer Type Safety to Effect Safety

In the previous variant of Control, prompts carried the answer type Result to ensure that
using control effects is type safe. To also make them effect safe and prevent programs like
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problem4 from type checking, the type Prompt (Figure 4) now additionally contains a type
parameter Effects.

trait Prompt[Result, Effects]

The type Prompt[R, E] can conceptually be understood as type Prompt[R / E]. However,
we track the two aspects in separate type parameters to improve type inference.

Intuitively, the body of a shift0 is evaluated at the position of the corresponding reset.
This is reflected in its type which expands to:

body: (A ⇒ R / E) ⇒ R / E

Both, the answer type R and the effects E have to match with the ones at the corresponding
reset[R, E]. Thus prompt-passing style is not only essential for operationally delimiting
control effects but also necessary to carry both the expected answer type as well as the
available effects from the reset to the shift0 that uses the prompt.

Since the body of shift0 has to return R / E it cannot shift to the same prompt (as
in problem3). This would require a type of R / (p.type & E). The problematic program
problem4 is ruled out too, since p1 has type Prompt[Int, Pure] and thus the body of the
first shift needs to be pure and cannot use p2.

Example 1 - Effect Typed

We are now ready to revisit the examples from the previous section and assign effect types.
The first example does not need to change. Only the type is a bit more precise:

val ex: Int / Pure = reset { p: Prompt[Int, Pure] ⇒
shift0(p) { k ⇒ k(100) flatMap k } map { 10 + _ }

} map { 1 + _ }

It is now clear from the effect type that after resetting, there are no more control effects left
to delimit and we can safely run ex.

Example 2 - Effect Typed

The second example illustrates how each reset removes its corresponding prompt from
the effect type.

val ex2: Int / Pure = reset { p1: Prompt[Int, Pure] ⇒
reset { p2: Prompt[Boolean, p1.type] ⇒

shift0(p1) { k ⇒ pure(21) } // Control[Int, p2.type & p1.type]
} map { if (_) 1 else 2 } // Control[Int, p1.type]

} map { 2 * _ } // Control[Int, Pure]

While the program only shifts to prompt p1, the type of reset requires the body of the inner
reset to have type Control[Int, p1.type & p2.type] which it has by effect subtyping.

Example 3 - Effect Typed

Adding effect types to the third example is a bit more involved. In the previous section,
we defined type aliases as interfaces of the effectful functions flip and raise (Figure 3a).
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trait Eff { type effect }
trait Exc extends Eff { def raise(msg: String): Nothing / effect }
trait Amb extends Eff { def flip(): Boolean / effect }

(a) Effect Signatures for exception and ambiguity.

def maybe[R, E](prog: (exc: Exc) ⇒ R / (exc.effect & E)): Option[R] / E =
reset { p ⇒

val exc = new Exc {
type effect = p.type // type refinement
def raise(msg: String) = shift0(p) { ... }

}
prog(exc) map { x ⇒ Some(x) }

}

(b) Handler function for the exception effect. Implementation of raise like in Figure 3b.

def collect[R, E](prog: (amb: Amb) ⇒ R / (amb.effect & E)): List[R] / E =
reset { p ⇒

val amb = new Amb {
type effect = p.type // type refinement
def flip() = shift0(p) { ... }

}
prog(amb) map { x ⇒ List(x) }

}

(c) Handler function for the ambiguity effect. Implementation of flip like in Figure 3c.
Fig. 5. Using effect safe delimited control to declare and handle exception and ambiguity effects.

While then it was sufficient to say that flip and raise use any control effects by making
them return for example Control[Boolean], we now have to be more specific. The traits
Amb and Exc in Figure 5a are not much different from the equally named type aliases we
defined earlier. The two differences are:

1. Operations are now named (that is flip and raise are explicitly named methods)
whereas earlier we used the apply method that Scala generates for function types.

2. Guided by the implementation of the previous section, we know that we will eventu-
ally use some prompt to implement each of the effect operations. Since we don’t want
to expose implementation details, we hide the prompt type behind an existentially
qualified type member effect.

Maybe not surprisingly, these types coincide with the definitions of effect signatures in
Figure 1a. The use of these effects is now exactly as in the introductory example as well:

def drunkFlip(exc: Exc, amb: Amb): String / (amb.effect & exc.effect) =
for {

caught ← amb.flip()
heads ← if (caught) amb.flip() else exc.raise("Too drunk")

} yield if (heads) "Heads" else "Tails"
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The implementation of handler functions is given in Figures 5b and 5c. The implementa-
tions of raise and flip in the handler functions are like in the previous section and we
omit them. However, we do have to assign more precise types! Most importantly, handlers
now have to establish the type equivalence between type effect and the singleton type of
the prompt p.type that they use in the implementation of the effectful methods raise and
flip. The type refinement type effect = p.type is necessary to unify amb.effect with
p.type. This way reset removes amb.effect from the effects.

With types assigned to maybe and collect, we are ready to type and effect check the
example program from the introduction:

val res1 = run {
collect { amb ⇒

maybe { exc ⇒
drunkFlip(amb, exc) // Control[String, exc.effect & amb.effect]

} // Control[Option[String], amb.effect]
} // Control[List[Option[String]], Pure]

} // List[Option[String]]

4.3. Effect Parametricity

Since we embed our effect system into Scala, we can reuse Scala’s support for subtyping
and type polymorphism to express effect subtyping and effect polymorphic functions. This
is an important advantage over effect systems that encode effect rows using type level lists.
One example of an effect polymorphic, higher-order function is

def map[A, B, E](lst: List[A], f: A ⇒ B / E): List[B] / E

The function map is effect polymorphic in the effects E used by function f. The return type
of map indicates that it potentially calls f in its implementation and so has the same effects
E as f. The effects still need to be handled by the caller of map. In particular, since map is
polymorphic in the effects E, we claim that it should not be possible for it to (accidentally)
handle any concrete effect in E no matter what E will be instantiated to at the call site.
That is, in the following user program, we should be able to determine statically that
flip is handled by collect and no implementation of map should be able to violate this
assumption.

collect { amb ⇒ map(List(1,2,3), n ⇒ amb.flip()) }

We refer to this property as effect parametricity. It has also been called abstraction safety
in the literature (Zhang & Myers, 2019).

4.3.1. Effect Encapsulation

A variant of this problem can be observed in languages featuring an ML-like type system
with row-polymorphism for effect types like Koka and Frank – referred to as the effect
encapsulation problem (Lindley, 2018; Leijen, 2018).

The problem is illustrated in the following program adapted from Leijen (2018) written
in the Koka language.
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fun f(action: () → <exc|e> a): e option<a> { // types inferred
maybe {

if (...) { raise("abort") }
action()

}
}

Here, f is a higher-order function that takes an effectful function action as its argument.
The function f uses exceptions in its implementation but locally handles them with the
maybe handler. This implementation detail still leaks as part of the inferred type. The
inferred type now states that exc effects of action will be handled by f. The reason is that
Koka implements effect subtyping via row polymorphism so the effect row of action()
needs to be unified with the other statements handled by maybe.

4.3.2. Accidental Handling

We might try to annotate action with the type () → e a but this will not type check. And
rightfully so: types and effects in Koka are erased at compile time and do not influence
the runtime semantics. Removing exc from the row of effects of f hides the fact that the
operational semantics of Koka will handle any exception effect used in action with the
maybe handler in f.

As a solution to this problem Koka and Frank introduce some form of manual lifting op-
eration (Biernacki et al., 2018). Using inject, in Koka the above example can be rewritten
to

fun f(action: () → e a): e option<a> { // types inferred
maybe {

if (...) { raise("abort") }
inject<exc> { action() }

}
}

Manually injecting the exc effect into the effect row also has operational content as de-
scribed by Leijen (2018): the runtime search for the exception handler will skip this maybe
handler in f.

Since they are based on runtime lookup of a handler for a given global effect, the
accidental handling of effects can occur in languages without static effect systems like
MulticoreOCaml (Dolan et al., 2014) and Eff (Bauer & Pretnar, 2015). The previous pre-
sentation of Effekt for Scala (Brachthäuser & Schuster, 2017) never had this encapsulation
problem and was prepared to support effect parametricity. Just like presented in this paper

• user programs are written in capability passing style – that is capabilities are explic-
itly referenced and not looked up at runtime;
• every reset introduces a fresh prompt at runtime – this avoids accidental capture even

if the same handler function is called multiple times.

The effect system presented in this section is designed to integrate well with the existing
operational semantics. The combination of capture free operational semantics and effect
safety gives us effect parametricity. A theoretical result about effect parametricity has been
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presented recently by Zhang & Myers (2019). We present a practical implementation of a
very similar effect system in Scala.
Concretely, in Effekt we can write two variants of the function f with different types:

def f1[A, E](action: (exc: Exc) ⇒ A / (exc.effect & E)): Option[A] / E
def f2[A, E](action: () ⇒ A / E): Option[A] / E

The type of f1 makes clear that action has an unhandled exception effect that f1 might
handle. In the second variant, f2 is fully parametric in the effects used by action. No
effect handler in f2 can interfere with the effects used by action.

5. Even More Extensible Effects

In the previous section we have seen how to add effect safety to a library for programming
with delimited control and multiple, first-class prompts in Scala. When comparing the
implementations of handler functions maybe and collect, we find that there is only a
small difference between programming with multi-prompt delimited control (Section 4)
and programming with effect handlers (Section 2). In this section, we introduce the miss-
ing interfaces to program with effect handlers, highlight extensibility properties of our
implementation, and discuss the combination of effect handlers and object oriented pro-
gramming.

5.1. From Delimited Control to Effect Handlers

We purposefully presented programming with delimited control close to programming with
effect handlers to highlight one small, but important difference:

Effect handlers encapsulate the introduction of a prompt and its use.

What we mean is that users don’t manually pass prompts around which then can be used
to capture the continuation at arbitrary points in the program. Instead, there is a lexical
relation between effect operations that use a prompt and the reset that introduced the
prompt. We believe that this is one of the most important aspects that make programming
with effect handlers more approachable than programming with (multi-prompt) delimited
control.

The following example repeats the implementation of handler function maybe from Sec-
tion 2 but makes it explicit that handlers close over prompts.

def maybe[R, E](prog: (exc: Exc) ⇒ R / (exc.effect & E)): Option[R] / E =
handle { implicit prompt ⇒

val exc = new Exc with Handler(prompt) {
def raise(msg: String) = use { resume ⇒ pure(None) }

}
prog(exc) map { r ⇒ Some(r) }

}

The handle function and the trait Handler are both defined in Figure 6. Like reset, the
handle function brings a fresh prompt into scope. The trait Handler takes a prompt as its
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def handle[R, E](prog: implicit (p: Prompt[R, E]) ⇒ R / (p.type & E)): R / E
= reset(p ⇒ prog(p))

trait Use[R, E] extends Eff {
def use[A](body: CPS[A, R / E]): A / effect

}

trait Handler[R, E](implicit val prompt: Prompt[R, E]) extends Use[R, E] {
type effect = prompt.type
def use[A](body: CPS[A, R / E]) = shift0(prompt)(body)

}

Fig. 6. Effect handlers in terms of delimited control.

constructor argument and closes over it by storing it in the field prompt. It then implements
use in terms of shift0(prompt). Our effect handler interface hides the implementation in
terms of multi-prompt delimited control by making the prompt-passing implicit.
We split capturing the continuation with use into an interface Use and an implementation
Handler. This way, we can factor the maybe and collect handler implementations into
separate, reusable traits:

trait Maybe[R, E] extends Exc with Use[Option[R], E] {
def raise(msg: String) = use { resume ⇒ pure(None) }

}
trait Collect[R, E] extends Amb with Use[List[R], E] {

def flip() = use { resume ⇒ for {
xs ← resume(true)
ys ← resume(false)

} yield xs ++ ys }
}

Handling the Exc effect with the Maybe handler trait now amounts to constructing a handler
instance of Maybe and passing it to the program.

handle { prog(new Maybe[R, E] with Handler()) map { r ⇒ Some(r) } }

The handler instance implicitly closes (via Handler()) over the prompt which in turn is
implicitly brought into scope by handle.

Defining handlers as traits allows us to use mixin composition and thereby discover new
opportunities for extensible handler definitions which we explore in the remainder of this
section.

5.2. The Effect Expression Problem

Most implementations of libraries and languages for (algebraic) effects and handlers are
based on a deep embedding of effect operations. They reify effect operations as alterna-
tives in a sum type and represent effectful computations as a command-response tree. For
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instance, the flip effect operation would be reified as a constructor of an algebraic data
type Amb. Handlers fold over the tree of computation and use pattern matching to interpret
the reified effect operations (Leijen, 2014; Hillerström et al., 2017; Bauer & Pretnar, 2015;
Kiselyov & Ishii, 2015; Kiselyov & Sivaramakrishnan, 2016). To mix programs with
different effects means to extend an open union type of reified effect operations.

In contrast, by performing capability passing, Effekt builds on a shallow embedding (Hu-
dak, 1998; Carette et al., 2007) of effect operations. Instead of folding over the tree of
computation, user programs directly call effect operations on the handler. In a language
with mixin composition, shallow embeddings can be structured in a pleasingly extensi-
ble way (Oliveira & Cook, 2012). Thus, Effekt has a solution to the expression prob-
lem (Wadler, 1998) at its foundation, a property it shares with many other effect han-
dler implementations. For instance languages like Koka (Leijen, 2014), Frank (Lindley
et al., 2017), and Links (Hillerström et al., 2017) are based on row polymorphism (Gaster
& Jones, 1996) and Extensible Effects (Kiselyov et al., 2013; Kiselyov & Ishii, 2015) are
based on open unions (Swierstra, 2008).

Viewing the tree of computation as a recursive data type, we can describe the effect
expression problem (Brachthäuser & Schuster, 2017) as modularly and typesafe being able

a. to implement new handlers for an effect operation – this corresponds to adding a new
function definition over the recursive data type in the original expression problem;

b. to add new effect operations – this corresponds to adding a new variant to the recur-
sive data type in the original expression problem.

The analogy to the expression problem, however, is not perfect: Most descriptions of
the expression problem only consider a single algebra, whereas with effect handlers we
typically have more than one effect signature and the order of handling / folding over the
operations affects the semantics.

5.2.1. Dimensions of Extensibility

We can relate extensibility dimensions discussed in the literature on the expression prob-
lem to the effect handler setting and show how Effekt supports them. Importantly, by
embedding effect handlers into a general purpose programming language like Scala, the
modularity features of the host language become available to structure effectful programs
and handlers.

Adding new handlers for an effect. The first dimension of the effect expression problem.
A central feature of every implementation of effects and handlers is the ability to define a
new handler for an existing effect. We support this feature: users can define a new trait that
implements an existing effect signature.

Adding new operations to an effect. The second dimension of the effect expression
problem. It is important to distinguish adding an operation to an existing effect signature
and adding a new effect signature. Effekt supports both in a modular way as required for
solutions to the expression problem. While Section 2 already illustrated how to define new
effect signatures, let us look at an example of how to extend the effect signature of Amb
with a nondeterministic choice operator:
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trait Choose extends Eff {
def choose[A](first: A, second: A): A / effect

}
trait AmbChoose extends Amb with Choose

The definition of the new effect signature AmbChoose introduces a subtyping relationship
between Amb and AmbChoose – in consequence, programs that use the Amb effect can also
be handled by a handler supporting AmbChoose. To implement the handler, we could for
example mix in Collect and implement the new effect operation choose in terms of effect
operation flip that we have already implemented in Collect.

trait CollectChoose[R, E] extends AmbChoose with Collect[R, E] {
def choose[A](first: A, second: A): A / effect = for {

b ← flip()
} yield if (b) first else second

}

Combining independently developed effect signatures and handlers. The description
of the expression problem has seen many extensions and additional requirements. One
additional requirement described by Odersky & Zenger (2005a) is that the programmer
should be able to combine independently developed extensions. This requirement might
seem unnecessary in the context of effect handlers since instead of combining two effect
signatures a user can just use both effects separately. However, using trait mixin composi-
tion to combine two handlers, the handler implementations can share the effect domain as
well as implementation details like private methods and dependencies on other internally
used effects.

trait Backtrack[R, E] extends Amb with Use[Option[R], E] {
def flip() = use { resume ⇒ for {

fst ← resume(true)
res ← if (fst.isDefined) pure(fst) else resume(false)

} yield res }
}
trait Both[R, E] extends Backtrack[R, E] with Maybe[R, E]
def both[R, E](prog: (b: Amb & Exc) ⇒ R / (b.effect & E)): Option[R] / E =

handle {
prog(new Both[R, E] with Handler()) map { r ⇒ Some(r) }

}

The handler Backtrack is an alternative handler for Amb, interpreting ambiguity into the
effect domain Option[R]. Since the effect domains coincide, Both can mix Backtrack
and Maybe in one handler. Using the handler function both, we can handle Exc and Amb
simultaneously as in:

val res3: Option[String] = run { both { b ⇒ drunkFlip(b, b) } }

The example illustrates how handlers can be composed horizontally with mixin com-
position under the condition that they interpret the effects into the same effect domain.
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Operationally, they share the same prompt. By subtyping, the combined handler can be
used to handle both effects. In res3, it is passed down twice, once for each effect it handles.

Safe Forwarding of Effects. Effect handlers allow us to locally handle a subset of effects
used by a program. One interesting consequence is that handlers again can use effects in
their implementation which are then handled by other handlers. That is, we can compose
handlers vertically by forwarding.

When compared to the expression problem literature this forwarding to another han-
dler is remindful of family self references (Oliveira et al., 2013) or base algebras (Hofer
et al., 2008). We illustrate this with a handler for the parser effect (Leijen, 2016).

trait Parser extends Eff {
def alternative[A, E](fst: A / E, snd: A / E): A / (effect & E)
def accept(token: Char): Unit / effect

}

We can use the parser effect to describe a grammar that counts the number of consecutive
occurrences of the letter ’a’ ending in a single letter ’b’:

// AB ::= a AB | b
def AB(p: Parser): Int / p.effect = p.alternative(

for { _ ← p.accept(’a’); rest ← AB(p) } yield rest + 1,
for { _ ← p.accept(’b’) } yield 0)

To implement the parser effect, let us assume an effect signature and a handler implemen-
tation for reading characters from an input stream.

trait Input extends Eff { def read(): Char / effect }
def reader[R, E](s: String)(prog: (in: Input) ⇒ R / (in.effect & E)): R / E

Equipped with handlers for nondeterministic choice, exceptions and reader we can imple-
ment a handler for Parser.

trait ParserForward(
val exc: Exc, val amb: Amb, val in: Input

) extends Parser {
type effect = exc.effect & amb.effect & in.effect
def accept(expected: Char): Unit / effect = for {

next ← in.read()
res ← if (next == expected) pure(()) else exc.raise()

} yield res
def alternative[A, E](fst: A / E, snd: A / E) =

amb.flip() flatMap { b ⇒ if (b) fst else snd }
}

By expecting instances for Exc, Amb and Input as constructor arguments, the ParserForward
trait makes explicit that it depends on three capabilities. It closes over the handler instances
which in turn might close over prompts. Previously, we expressed that we use the effect of
capturing the continuation delimited by prompt, by defining type effect = prompt.type.
Similarly, we now define effect as the intersection of the effect types we forward to. This
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ties the scope of the parser capability to the intersection of scopes of the used capabilities
exc, amb and in and thereby guarantees effect safety.

Reusing the handler functions both and reader we can finally define the handler function
for parsers

def parse[R](lang: (p: Parser) ⇒ R / p.effect)(s: String) =
both { b ⇒ reader(s) { in ⇒ lang(new ParserForward(b, b, in) {}) } }

and use it to parse example strings:

run { parse(AB)("b") } //> Some(0)
run { parse(AB)("aab") } //> Some(2)
run { parse(AB)("xab") } //> None

5.3. Effect Handlers and Object Orientation

Effekt is an embedding of effect handlers in a language with support for object oriented
programming. Naturally the question arises how these two features interact.
Object oriented programming has a strong focus on encapsulation. In particular, the con-
crete implementation of an object and its internal state is often hidden behind an interface.
That is, the implementation can differ with the granularity of a single object. Another
important feature is that objects are first-class and typically must be stored on the heap.

In contrast, effects and handlers are tied to a stack discipline. Effect handlers can capture
parts of the stack as a continuation, prompts delimit segments of the stack and effect typing
asserts that these stack operations are safe.

Which effects are used by an object’s implementation can either be seen as part of the
public interface or as a private implementation detail. It is a design decision the program-
mer should make. However, if the effects used by an object are hidden behind an interface,
how can we assert effect safety? For instance, if an object closes over a capability, the
object’s lifetime needs to be restricted to the capability’s lifetime. Otherwise the use of the
capability might not be effect safe.

In this section, we will discuss possible design choices when combining effect handlers
with object oriented programming while maintaining effect safety. The following interface
will serve as a running example:

trait Person {
def greet(other: String): Unit

}

5.3.1. Alternative 1. Effects as Part of the Public Interface

An implementation of this interface might want to use the following effect to print the
greeting on the console.

trait Console extends Eff { def print(msg: String): Unit / effect }

However, the method greet as defined above does not mention the Console effect. Of
course, we can change the interface accordingly.
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trait Person {
def greet(other: String)(out: Console): Unit / out.effect

}

Now, the Console effect is part of the public interface and all implementations of Person
can make use of it to implement method greet. The effect has to be handled by the caller of
greet. In this variant, it is possible to have multiple implementations of Person and store
the instances in data structures on the heap.

var p1: Person = new Person { ... }
var p2: Person = new Person { ... }
val ps = List(p1, p2)

5.3.2. Alternative 2. Hiding Effects behind an Interface

Changing the interface of Person to mention the effects used by a particular implementa-
tion leaks implementation details that we might want to encapsulate. As in the previous
sections, we can hide the effects behind an abstract type member effect.

trait Person {
type effect
def greet(other: String): Unit / effect

}

Just like a handler closes over a prompt, an implementation of Person would close over the
effect capabilities:

class MyPerson(val out: Console) extends Person {
type effect = out.effect
def greet(other: String) = out.print("Hello " + other)

}

This way the lifetime of an object of type MyPerson is coupled to the lifetime of the
capability out.

withConsole { out ⇒
...
val p = new MyPerson(out)
...

}

For instance, the object p must not leave the scope of withConsole which is ensured by our
effect system: out.effect is an abstract type that only unifies with this one particular call
to withConsole.
To be eventually able to handle the effects used by the implementation, users thus always
need to have stable paths to an object.

def user(p1: Person, p2: Person): Unit / (p1.effect & p2.effect) = for {
_ ← p1.greet("Alice")
_ ← p2.greet("Bob")

} yield ()
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In this example p1 and p2 are arguments of method user and thus have stable paths that can
be used path-dependently in the return type. In general, the requirement of path stability
excludes objects to be stored in mutable references or in containers like lists. While we can
store p1 in a mutable variable, the effect system will prevent us from calling any effectful
methods on it.

5.3.3. Alternative 3. Grouping Objects by their Effect Implementations

The first alternative requires all objects to use the same effects in their implementation and
the second alternative allows each object to individually differ in their effect implementa-
tion. Both solutions also have drawbacks: the former constrains the implementer while the
latter imposes restrictions on the user.

As a compromise between the two extremes, we can generalize over the effect imple-
mentation and thereby group objects by their effect implementations.

trait Person[E] {
def greet(other: String): Unit / E

}

Like with abstract type members, implementing classes can instantiate E to the desired
implementation effects. Like with the first alternative, objects of type Person[Console]
leak the implementation detail that they use the Console effect in their implementation.

Users can be polymorphic in the effect type:

def user[E](p1: Person[E], p2: Person[E]): Unit / E = for {
_ ← p1.greet("Alice")
_ ← p2.greet("Bob")

} yield ()

While we now can store objects of type Person[E] in mutable references or lists of type
List[Person[E]], this requires all instances to have the same effect implementation.

6. Related Work

Our implementation of delimited control is based on Dybvig et al. (2007). While Dybvig
et al., aim to be as general as possible, we specialize their library for control operators
with first-class prompts to only expose reset and shift0. In order to achieve effect para-
metricity we have to make sure that each prompt uniquely determines a reset. Therefore
in Effekt every reset introduces a fresh prompt. Being based on shift0 and introducing
a fresh prompt per reset, our control operators are closely related to spawn / controller
(Hieb & Dybvig, 1990) as illustrated by the following equation:

def spawn(body) = reset { p ⇒ body(shift(p)) }

Like our presentation in Section 3, Dybvig et al., guarantee answer type safety by indexing
prompts with the expected answer type. Furthermore, they use rank-2 types to prevent
prompts from being used across different instances of run. But, as they observe, this is not
enough to achieve effect safety, which they explicitly leave to future work. We solve this
problem in Section 4. We use abstract type members instead of rank-2 types to achieve
better type inference in Scala.
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Kiselyov & Shan (2008) generalize resource safety from a single region to multiple
nested regions. They achieve region polymorphism and region subtyping together with
good type inference for their library in Haskell. On the type level they represent nested
regions as multiple applications of a monad transformer while we represent nested delim-
iters by an intersection of singleton prompt types. To achieve region polymorphism they
reuse Haskell’s polymorphism and to achieve region subtyping they use Haskell’s type
class instance search. To achieve effect polymorphism we reuse Scala’s polymorphism and
to achieve subtyping we reuse subtyping for intersection types built into Scala.
Most languages with effect handlers base their effect system on some form of row poly-
morphism. Prominent examples are Koka (Leijen, 2014), Frank (Lindley et al., 2017),
and Links (Hillerström & Lindley, 2016; Hillerström et al., 2017). In contrast, effect safe
library embeddings like Extensible Effects (Kiselyov et al., 2013; Kiselyov & Ishii, 2015)
use various forms of open union types to track the list of unhandled effects. In Effekt,
we index the monad for delimited control with an intersection of all effects used by a
computation. Parreaux et al. (2018) apply a very similar strategy to implement hygienic
macros. The type parameter Ctx of the type Code[+Typ, -Ctx] is used to track the set of
free variables:

class Variable[A] {
type Ctx;
def substitute[T,C](pgrm: Code[T, Ctx & C], v: Code[A, C]): Code[T,C]

}

As can be seen from the type of substitute, substitution of free variables removes Ctx
from the intersection type and thus corresponds to handling of effects.

Both, the dynamic and static semantics of Effekt is closely related to λ⇓⇑ presented
by Zhang & Myers (2019). As in previous versions of Effekt (Brachthäuser & Schus-
ter, 2017), capabilities in λ⇓⇑ are tuples of a label and the handler implementation. Also
like in Effekt, they are explicitly passed to the use-site of the effect. Handling an effect
introduces a fresh label. Like prompts in Effekt, the label is used on the term level to
delimit the scope of captured continuations. Like the singleton type of prompts in the
present paper, the label is also used on the type level to track the set of unhandled effects.
Due to the embedding of Effekt in Scala, prompts are first class while labels in λ⇓⇑ are
not first class. Instead, the binding of a label by means of try, and the use of a label in a
handler implementation is statically scoped.
The effect system as presented in this paper is heavily influenced by the one of λ⇓⇑. To
ensure effect safety, Zhang & Myers use a simple form of dependent types: Using an
effect handler h introduces h.lbl in the effect row which is effectively a set of labels.
This dependent effect type can only be discharged by the very same reset that binds the
label. Zhang & Myers formalize λ⇓⇑ and formally show effect parametricity. However,
they do not provide an implementation of their calculus. We use intersection types and
path dependent types to encode the ideas of the λ⇓⇑ effect system and thereby make Effekt
effect safe.

In earlier work on Effekt (2017; 2018), we started to explore the combination of effect
handlers and object orientation. However, those versions of Effekt did not guarantee effect
safety. The present paper shows how to add effect safety to Effekt, support effect polymor-
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phism, and effect parametricity. Indexing the monad for delimited control with the set of
used effects is essential to guarantee effect safety. It is not immediate to us how the effect
system can be embedded in a direct style version of the library (Brachthäuser et al., 2018)
because there is no monadic type that could carry the set of used effects. In earlier versions
of Scala Effekt, handle did not create a fresh prompt, but used the given handler instance
as a prompt. But this would allow for accidental handling of operations, hence we changed
the interface of the library.

As highlighted in Section 5, effect safe programming with effect handlers in a language
with objects comes with new challenges – mediating encapsulation and flexible use of ob-
jects. Inostroza & van der Storm (2018) also combine effect handlers and object orientation
in the language JEff. In JEff, the continuation takes an updated copy of the effect handler
as additional argument. This allows both to model dynamically scoped state (Kiselyov
et al., 2006) and to change the handler implementation for the rest of the computation,
similar to shallow handlers. The effect system of JEff does not feature effect polymorphism
and hence problems with effect encapsulation do not arise.

7. Conclusion

In this paper, we presented Effekt, a monadic library for programming with effect handlers
in Scala that features effect polymorphism, effect subtyping and effect safety. We use inter-
section types and path-dependent types to track the set of effects a program might use. This
allowed us to directly reuse Scala’s support for polymorphism for effect polymorphism and
Scala’s support for subtyping for effect subtyping. Combining effect handlers with object
oriented programming both offers new ways to modularize effectful programs but also
comes with new challenges.
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