

Towards Modular
Computer Language

Components
Tillmann Rendel

University of Tübingen

Presentation at the colloquium of the Oregon State University's
School of Electrical Engineering and Computer Science
Corvallis, October 27, 2014

Languages Matter

Computer Languages

Economy of Computer Languages

● Language maker invests effort into
language design and implementation.

● Language user invests effort into
language learning and use.

● Language user benefits from language use.
● Return on investment?

Programming Language (PL)

● Languages for general-purpose computing
● Distill computing paradigm into a PL
● Invest effort into PL design and implementation
● Reuse PL for many software projects
● Use by programmers

● Language author:
team of language engineers

Domain-Specific Languages (DSL)

● Languages for just one application domain
● Distill domain knowledge into the DSL
● Invest effort into DSL design & implementation
● Reuse DSL for many programs in the domain
● Use by domain experts (non-programmers)

● Language author:
domain expert + language engineer

Language-Oriented Programming

● Languages for just one software project
● Express component interface as language
● Invest effort into component design & impl.
● Reuse DSL for many clients of the component
● Use by other team members (programmers)

● Language author:
software engineer

How to invest less
and gain more?

Reusable Language Components

● Can languages be reusable components?

● Reuse whole languages inside another language?
● Reuse fragments of a language?
● Build a new language from bits and pieces?
● Reuse language design concepts?
● Reuse language implementation artifacts?
● Reuse language ecosystems?

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

What is in a Language?

● Syntax
(What are the programs?)

● Static Semantics
(Which programs are legal?)

● Dynamic Semantics
(What do the programs mean?)

● Editors
(How to write the programs?)

● Interpreters and
Compilers
(How to run the programs?)

● Development Tools
(How to interact with a
program?)

● Ecosystem
(Which other programs are
there?)

How is a Language Structured?

How is a Language Structured?

● strings
● pictures
● abstract syntax trees

How is a Language Structured?

● strings
● pictures
● abstract syntax trees

What is Language Composition?

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel.
Language Composition Untangled.
In Proceedings of Workshop on Language Descriptions, Tools,
and Applications, 2012.

Language Composition Untangled

● Extension
(can extend a language
unchanged)

● Unification
(can merge two languages
unchanged)

● Self-Extension
(can implement language
extension in the language
itself)

Erdweg et al. (2012)

● Incremental Extension
(can extend extensions)

● Extension Unification
(can unify extensions)

How to Compose Syntax?

Sebastian Erdweg, Tillmann Rendel, Christian Kästner,
Klaus Ostermann.
SugarJ: Library-based Syntactic Language Extensibility.
In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages & Applications, 2011.

 Erdweg et al. (2011)

SugarJ

import regexp.RegExp;
import pairs.Pair;

public class Test {
 RegExp r = /(a|b)c/;
 String s = “hello“;
 (String, Int) pair = (“answer“, 42)
 (RegExp, String) pair = (/ab*/, “text“);
}

 Erdweg et al. (2011)

SugarJ

import regexp.RegExp;
import pairs.Pair;

public class Test {
 RegExp r = /(a|b)c/;
 String s = “hello“;
 (String, Int) pair = (“answer“, 42)
 (RegExp, String) pair = (/ab*/, “text“);
}

 Erdweg et al. (2011)

SugarJ

import regexp.RegExp;
import pairs.Pair;

public class Test {
 RegExp r = /(a|b)c/;
 String s = “hello“;
 (String, Int) pair = (“answer“, 42)
 (RegExp, String) pair = (/ab*/, “text“);
}

imports extend the language

 Erdweg et al. (2011)

SugarJ

import regexp.RegExp;
import pairs.Pair;

public class Test {
 RegExp r = /(a|b)c/;
 String s = “hello“;
 (String, Int) pair = (“answer“, 42)
 (RegExp, String) pair = (/ab*/, “text“);
}

another import

 Erdweg et al. (2011)

SugarJ

import regexp.RegExp;
import pairs.Pair;

public class Test {
 RegExp r = /(a|b)c/;
 String s = “hello“;
 (String, Int) pair = (“answer“, 42)
 (RegExp, String) pair = (/ab*/, “text“);
} language extensions compose

 Erdweg et al. (2011)

SugarJ Implementation

How to Compose Editors?

Sebastian Erdweg, Lennart C. L. Kats, Tillmann Rendel,
Christian Kästner, Klaus Ostermann, Eelco Visser.
Growing a Language Environment with Editor Libraries.
In Proceedings of Conference on Generative Programming
and Component Engineering, 2011.

 Erdweg et al. (2011)

How to Compose Interpreters?

Christian Hofer, Klaus Ostermann, Tillmann Rendel, Adriaan
Moors.
Polymorphic Embedding of DSLs.
In Proceedings of Conference on Generative Programming
and Component Engineering, 2008.

How to Compose Compilers?

● Macro Systems
● Extensible Compilers
● Attribute Grammars

Tillmann Rendel, Jonathan Brachthäuser, Klaus Ostermann.
From Object Algebras to Attribute Grammars.
In Proceedings of Conference on Object Oriented
Programming Systems Languages & Applications, 2014.

Tree Traversals

Rendel et al. (2014)

Tree Traversals

Rendel et al. (2014)

Tree Traversals

Rendel et al. (2014)

Tree Traversals

Rendel et al. (2014)

Tree Traversals

Represent tree
traversals as
first-class
reusable
components
(in Scala)!

Rendel et al. (2014)

Traversal Components

Bottom-Up Dataflow Top-Down Dataflow

● First-class Scala values
● Dependencies checked by Scala type system

Rendel et al. (2014)

Traversal Composition

Rendel et al. (2014)

Traversal Composition

compose all bottom-up traversals

Rendel et al. (2014)

Traversal Composition

compose all top-down traversals

Rendel et al. (2014)

Traversal Composition

assemble a one-pass compiler

Rendel et al. (2014)

Monolithic
compiler
1 file
807 lines of Java code
entangled

Modularized
compiler
ca. 25 files
1620 lines of Scala code
modular

Rendel et al. (2014)

How to Compose Ecosystems?

● Common target language helps

How to Compose Static Semantics

Tillmann Rendel, Klaus Ostermann, Christian Hofer.
Typed Self-Representation.
In Proceedings of the International Conference on
Programming Language Design and Implementation, June
2009.

Typed Self-Representation

Rendel et al. (2009)

Can we embed
a statically typed language

into itself?

Type-Safe Self-Evaluation

<T> T eval(expr: Expr<T>)

eval : forall T . Expr T T→

Rendel et al. (2009)

The Expr<T> Family of Types

● Representation
quote(t) : Expr<T> if and only if t : T

● Adequacy
expr : Expr<T> implies t : T with quote(expr) = t exists

● First Class Interpretations
there are operations on Expr<T> values

● Self Interpretation
t : T implies eval<T>(quote(t)) == t

● Reflection
quote(t) exhibits the intensional structure of t

Rendel et al. (2009)

The Language Fω

● Pure Lambda Calculus

● Terms, Types, and Kinds
● Terms are classified by Types
● Types are classified by Kinds
● Kinds are classified by Kinds, too

● Expr<T> is implemented with Church encoding

*

Rendel et al. (2009)

Related Work

● Metacircularity in the Polymorphic Lambda-Calculus
by Frank Pfenning and Peter Lee.
In Theoretical Computer Science 89(1), 1991.

● Typed Self-Representation
by Tillmann Rendel, Klaus Ostermann and Christian Hofer.
In Proc. of PLDI, 2009.

● Typed Self-Interpretation by Pattern Matching
by Barry Jay and Jens Palsberg.
In Proc. of ICFP, 2011.

● Self-Representation in Girard's System U.
by Matt Brown and Jens Palsberg.
To appear in Proc. of POPL, 2015.

Rendel et al. (2009)

How to Design Languages?

Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann,
Eric Walkingshaw.
Formal Semantics as a Language Designer’s Toolbox: A case for
semantics-inspired language design.
Presentation at Workshop on Domain-Specific Language Design and
Implementation, October 2014

How can a

programmer/
language designer

learn to design languages that are

elegant and usable?

Giarrusso et al. (2014)

Formal Semantics

● Semanticists know a lot about languages
(it's their job)

● Semanticists know a lot about elegance
(they are mathematicians)

● Mathematical elegance has pragmatic advantages

Elegant = powerful and simple, less to learn

Giarrusso et al. (2014)

Can formal semantics guide a
programmer/language designer

towards an elegant and usable design?

Giarrusso et al. (2014)

Problem 1

● Problem: Formal semantics is a lot of work.
● Proposed Solution: Don't actually formalize the

semantics, just let the insights of formal
semantics guide your design process.

Giarrusso et al. (2014)

Problem 2

● Problem: The language of the semanticists is not
understandable to the working
programmer/language designers

● Proposed Solution: Package the insights from
formal semantics as language design patterns.

Giarrusso et al. (2014)

Language Design Patterns

● Patterns work for software design,
we want to adapt them for language design

● Use terms that make sense to the working
programmer/language designer

Giarrusso et al. (2014)

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Lexical Scoping

Which bound occurrence refers to
which binding occurrence?

All bound occurrences in a
continuous region of the source file
bind to the same binding
occurrence.

You can reason about the binding
structure statically.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Lexical Scoping

Which bound occurrence refers to
which binding occurrence?

All bound occurrences in a
continuous region of the source file
bind to the same binding
occurrence.

You can reason about the binding
structure statically.

 name

 problem

 solution

 effects

Associated Scoping

Which bound occurrence refers to
which binding occurrence?

Attach the scoping information to
a domain-specific entity in your
language design.

Your binding structure supports
your domain integration.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Recursive Meaning

How to define the meaning
mapping?

Map each phrase of the program to
its meaning.

You can explain what a part of a
program means.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

 Giarrusso et al. (2014)

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Recursive Meaning

How to define the meaning
mapping?

Map each phrase of the program to
its meaning.

You can explain what a part of a
program means.

 name

 problem

 solution

 effects

Compositional Meaning

How to define the meaning
mapping?

Define the meaning of a phrase in
terms of the meaning of its
subphrases.

The meaning of a phrase is the
phrase's interface. Allow code
moving without changing meaning.

 name

 problem

 solution

 effects

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Destructor

Which operations for a type?

Provide destructors for getting
information out of values of a type.

User programs can use values of
the type.

 name

 problem

 solution

 effects

Giarrusso et al. (2014)

 Giarrusso et al. (2014)

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Destructor

Which operations for a type?

Provide destructors for getting
information out of values of a type.

User programs can use values of
the type.

 name

 problem

 solution

 effects

Information Preservation

How to balance constructors and
destructors?

Provide enough destructors to get
all information out of an
constructed value.
Provide enough constructors to
recreate a destructed value.

No identity and no secrets.

 Name

 problem

 solution

 effects

Language Design Patterns ...

● guide the design process
(„think of all constructors“)

● structure the design
(„separate constructors and destructors“)

● highlight design choices
(„which kind of scoping is appropriate?“)

● explain effects („user programs can ...“)

● interact („if a compositional meaning is a phrase's interface, a
simple meaning is a better interface“)

Giarrusso et al. (2014)

Conclusion

● Computer languages matter
● There are many computer languages

● Package domain knowledge in languages
● Structure component interfaces as languages

● Reuse language design concepts
● Reuse language implementation artifacts

Conclusion

● Computer languages matter
● There are many computer languages

● Package domain knowledge in languages
● Structure component interfaces as languages

● Reuse language design concepts
● Reuse language implementation artifacts

Thanks

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82

