Towards Modular
Computer Language
Components

Tillmann Rendel
University of Tlibingen

Presentation at the colloquium of the Oregon State University's
School of Electrical Engineering and Computer Science
Corvallis, October 27, 2014

' Lang* AN
1929, Bntlsiiim'

;51-; affair with Edw
- lan-guage (15
ST beings of voice

these sound

a | “+'I 'I"

= ADOTPE W

T & dw\od“\ e ! eQ‘;_ :\ge)“(’aé\;\e -
NLOSOMOule el A A0VE

-94 7:13

I::u ¢
..l-"- .‘.
.l 7
'.-.I '1"
1
i baa
" i“
% I
' |2
i g
L5
1]
[
1

‘“m'- SPOLE logged into ATS.USR:[ATSVAX.SPOLE] at Tue 8-Feb-94 19:13, job 25201

FTPYPUT SX:SEISDATO398.DAT !

To remote file: SEISDAT0398.DAT . |
::'m"‘:' of DSAL: [ATSVAX.SPOLEISEISDATO398.DAT;1 started. _;
rt=>| completed. 262108 (8) bytes transferred. ,

OB TS T

= A DO R

Reply received
HELLO THERE!!

(COMNS)

Job HFLOG (queue FASTSBATCH, entry 347) completed
CONNS)>

Job HFLOG (queue FASTSBATCH, entry 349) completed

COMNS) FTP 129.171,105.58/INAGE

WALNUT,SPOLE.GOV MultiNet FTP user process 3.2(106)

Connection opened (Assuming 8-bit connections)

Catsvax.rsaas.nisni.edu MultiNet FTP Server Process 3.2(14) at Tue #-Feb-94 7:13

FIP)USER SPOLE
<User name (SPOLE) ok. Password, please.

Password:
{User SPOLE logged into ATS.USR: [ATSVAX.SPOLE] at Tue 0-Feb-34 19:13, job 25201

ad,
FTPYPUT SX:SEISDATO398.DAT
(v: :'ﬂt“ file: SEISDATO398.DAT

ore of DSAL: [ATSVAX.SPOLESEISDATO398.DAT;1 started
Flesgsfer comleted. 262108 () bytes transferred. ;

Computer Languages

,0LUUS

' 10104
_.u'LlDUUlU |
_‘dﬂﬂﬂﬂﬂlﬂlﬂllllﬂl 0Ll .
,JiﬂLDLDLDLDDDll.D].DlDL ‘

] 'IDMDLDLLLULUIILDUDIDlluUL
,01010111100010100010101 1 1
110100010101000101010101 010

4010110001010100100101, 1,
"mpﬂwl.ﬂllll.ﬂlﬂlﬂlﬂ" P
ULULDDULLDLULDJF .
W,LDLLLDDDLD" .

1’77 1N~ S

Economy of Computer Languages

* Language maker invests effort into
language design and implementation.

* Language user invests effort into
language learning and use.

* Language user benefits from language use.

e Return on investment?

Programming Language (PL)

Languages for general-purpose computing

Distill computing paradigm into a PL

Invest effort into PL design and implementation
Reuse PL for many software projects

Use by programmers

Language author:
team of language engineers

Domain-Specific Languages (DSL)

Invest effort into DS

Languages for just one application domain

Distill domain knowledge into the DSL

L C

esign & implementation

Reuse DSL for many programs in the domain

Use by domain experts (non-programmers)

Language author:

domain expert + language engineer

Langua

Language

Express c

ge-Oriented Programming

s for just one software project

omponent interface as language

Invest effort into component design & impl.

Reuse DS

L for many clients of the component

Use by ot

Language

ner team members (programmers)

author:

software engineer

How to invest less
and gain more?

Reusable Language Components

Can languages be reusable components?

Reuse whole languages inside another language?
Reuse fragments of a language?

Build a new language from bits and pieces?
Reuse language design concepts?

Reuse language implementation artifacts?

Reuse language ecosystems?

1.8 mm

£
=
™~
=
a

= I
E »x x = E
S © EE
0o LA ™~ 0O
L | .”._ﬁ
o a I '
E v % o i
~d >
By N

What is in a Language?

Syntax * Interpreters and
[What are the programs?] Compllers

(How to run the programs?)

e Static Semantics

(Which programs are legal?) * Development Tools

(How to interact with a
program?)

* Dynamic Semantics
(What do the programs mean?)
* Ecosystem

* Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

* Syntax * Interpreters and

(What are the programs?) Compilers
(How to run the programs?)

Static Semantics

(Which programs are legal?) * Development Tools

(How to interact with a
program?)

* Dynamic Semantics
(What do the programs mean?)
* Ecosystem

* Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

* Syntax * Interpreters and

(What are the programs?) Compi]ers

: : How t th ?
e Static Semantics (How to run the programs?)

(Which programs are legal?) * Development Tools

(How to interact with a
program?)

Dynamic Semantics

(What do the programs mean?)

* Ecosystem

* Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

* Syntax * Interpreters and

(What are the programs?) Cgmpi]ers

: : How t th ?
e Static Semantics (How to run the programs?)

(Which programs are legal?) * Development Tools

(How to interact with a
program?)

* Dynamic Semantics
(What do the programs mean?)

* Ecosystem

Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

Syntax Interpreters and
(What are the programs?) Compilers

(How to run the programs?)

Static Semantics

(Which programs are legal?) * Development Tools

(How to interact with a
program?)

Dynamic Semantics

(What do the programs mean?)
* Ecosystem

Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

Syntax * Interpreters and

(What are the programs?) Compi]ers

Static Semantics (How to run the programs?)

(Which programs are legal?) Development Tools

(How to interact with a
program?)

Dynamic Semantics
(What do the programs mean?)

* Ecosystem

Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

Syntax * Interpreters and

(What are the programs?) Cgmpi]ers

Static Semantics (How to run the programs?)

(Which programs are legal?) * Development Tools

(How to interact with a

Dynamic Semantics program?)

(What do the programs mean?)

Ecosystem

Editors (Which other programs are
(How to write the programs?) there?)

What is in a Language?

Syntax * Interpreters and

(What are the programs?) Cgmpi]ers

Static Semantics (How to run the programs?)

(Which programs are legal?) * Development Tools

(How to interact with a

Dynamic Semantics program?)

(What do the programs mean?)
* Ecosystem

Editors (Which other programs are
(How to write the programs?) there?)

How is a Language Structured?

How is a Language Structured?

* strings
* pictures

* abstract syntax trees

How is a Language Structured?

* strings
* pictures

* abstract syntax trees

What is Language Composition?

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel.
Language Composition Untangled.

In Proceedings of Workshop on Language Descriptions, Tools,
and Applications, 2012.

Language Composition Untangled

* Extension * Incremental Extension
(can extend a language (can extend extensions)
unchanged) _ o _

* Extension Unification

e Unification (can unify extensions)

(can merge two languages
unchanged)

e Self-Extension

(can implement language
extension in the language

itself)

Erdweg et al. (2012)

How to Compose Syntax?

Sebastian Erdweg, Tillmann Rendel, Christian Kastner,
Klaus Ostermann.

Sugar]: Library-based Syntactic Language Extensibility.
In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages & Applications, 2011.

Sugar]

import regexp.RegExp;
import pairs.Pair;

public class Test {
RegExp r = /(alb)c/;
String s = “hello®;
(String, Int) pair = (“answer, 42)
(RegExp, String) pair = (/ab*/, “text*);

}

Erdweg et al. (2011)

Sugar]

Import regexp.RegExp;
import pairs.Pair;

public class Test {
RegExp r = /(alb)c/;
String s = “hello®;
(String, Int) pair = (“answer, 42)
(RegExp, String) pair = (/ab*/, “text*);

}

Erdweg et al. (2011)

Sugar]

import regexp.RegExp;

Import pairs.Pair, Imports extend the language

public class Te
RegExp r 4 /(alb)c/;
String s = “hello®;

(String, Int) pair = (“answer, 42)
(RegExp, String) pair = (/ab*/, “text*);

}

Erdweg et al. (2011)

[] . °

(Strig, Int)fpair 4 (“answer’, 42)

REGEXP, String) pair = (Jab~/, " text*);

Erdweg et al. (2011)

Sugar]

import regexp.RegExp;
import pairs.Pair;

public class Test {
RegExp r = /(a|b)c/;
String s = “hello®;

(String, Int) pair = (“answer, 4
(RegExp, String) pair =/(/ab*/, “text);

; language extensions compose

Erdweg et al. (2011)

Sugar] Implementation

H:’fﬂp‘? the current Brammar

only SugarJ e nodes

Sugar] +

extensions

mixved Sugar] e and extension B nodes

Erdweg et al. (2011)

fﬂ
-A‘ DESUGAR
,

J “1
. ;’!\ SPLIT
s

adapt the current desugaring

Grammar

Java

Desugaring

How to Compose Editors?

Sebastian Erdweg, Lennart C. L. Kats, Tillmann Rendel,
Christian Kastner, Klaus Ostermann, Eelco Visser.
Growing a Language Environment with Editor Libraries.
In Proceedings of Conference on Generative Programming
and Component Engineering, 2011.

FatenY=SiIa3r<-nanars 't

;"*'! -.:_'..".::.""'E".-.'.. S e APED Sy L JEFalNUIer.suy LIpSe = J Ut / / Hi !
e H @& |35 O Qv | Transform v | &1+ Hlv 80 v w5 >
T g = A= = Ay
Boo EMma.sug) [J o Dutli
] BookSch ' Ll S li 52 =
import xml.Sugar; — BN [2
import xml.Editor; W Ensliband '
import xml.schema.BookSchema; EpekHandler
TappendBook
Hpublic class BookHandler { Aehowk h
= public void appendBook({ContentHandler ch) throws SAXException { I ha;'.c _nr
String title = "Sweetness and Power"; ' . fp‘ AT
@Validate isPublished
I& & ch.<{lib}book title="{new String(title)}"> gettanauagy
<{lib}author name="5idney W. Mintz" /-
2 <{lib}editions=>
<{lib}edition year="1985" publisher="Viking Press" />
L) <{libledit year="1986" publisher="Penguin Bopks" /= |
</ {lib}editions> -
| Y
ad <iliblauthor ym
<{liblbook
Fr=r = <flibledition 3 R
[Zli Problems <{libleditions . =
1 error, 1 warnin
35 Cr| 1 Resource _Lm:atiun
¥ @ Errors (1 item)
% expected element edition of namespace lib BookHandler.sugj line 18
¥ (& warnings (1 item)

% skipping validation of quoted attribute value BookHandler.sugj line 14
- — = = — = = = = — = =3 Ya|pl
J D{} | Writable | Smart Insert | J

A

s
Erdweg et al. (2011)

How to Compose Interpreters?

Christian Hofer, Klaus Ostermann, Tillmann Rendel, Adriaan
Moors.

Polymorphic Embedding of DSLs.

In Proceedings of Conference on Generative Programming
and Component Engineering, 2008.

How to Compose Compilers?

* Macro Systems
* Extensible Compilers

e Attribute Grammars

Tillmann Rendel, Jonathan Brachthauser, Klaus Ostermann.
From Object Algebras to Attribute Grammars.

In Proceedings of Conference on Object Oriented
Programming Systems Languages & Applications, 2014.

Tree Traversals

l"'Irf {1:" -.

.

L t(.. '-{ £ 2
5 x { . E 4 ; 1

Tree Traversals

l"'Irf {1:" -.

.

L t(.. '-{ £ 2
5 x { . E 4 ; 1

Tree Traversals

l"'Irf {1:" -.

.

L t(.. '-{ £ 2
5 x { . E 4 ; 1

Tree Traversals

l"'Irf {1:" -.

.

L t(.. '-{ £ 2
5 x { . E 4 ; 1

Tree Traversals

Represent tree
traversals as
first-class
reusable
components

(in Scala)!

ol
/&

Traversal Components

Bottom-Up Dataflow Top-Down Dataflow

e First-class Scala values

* Dependencies checked by Scala type system

Rendel et al. (2014)

Traversal Composition

x 7
o\:o\»o\d}\:o\
o\ o\

Rendel et al. (2014)

Traversal Composition

compose all bottom-up traversals

’)\\ ,’)\
N INTONT N
N TN

Rendel et al. (2014)

Traversal Composition

compose all top-down traversals

x 2
/A:O\»O\ NN
o\ f>\

Rendel et al. (2014)

Traversal Composition

YR assemble a one-pass compiler YPRS
R R ORI
ON N

Rendel et al. (2014)

Monolithic Modularized
compiler compiler

1 file ca. 25 files

807 lines of Java code 1620 lines of Scala code
entangled modular

static void parasFunction(Map funce, MaBIprotetyses 1
Hap now HachHap(h

sat wrge - parasFormada{rarel;
ZELPIOKEN (TRFAR) §

skip(:

17 (TH

TSEND)
nartTokan(d;
if (provotypes. containakay(nana))

sempiTaBrrar (SAnplicate daclaration of Tenanalg

if (funce. comtainsNey(uane) &k argel=funce, pet(name))
compiTaRrrari® canf1icting daclaration af e T " -
proutypes pus (nams, angs) ;
3 wise
Lf Clues 15Ky Ctama))
compiloBrrar (*duplicata impleneatation of “enama); et suring, sarmae: Com Gening] smei s
L Gprulutypun. e busRuy Ganvd BE asgat=prulutgpus. gel faan))
el
Tune pul (naue, args)

eade(" nethad *+name):

abjeet Funetiocbrstatypes axtemds F T
ant. funpect 1 farsal
i ineci
cudn(” azge "+(axgari}), orn exrue (a*dualLcate Oeclasasion of
parsebody {args . vars , Tunce . JEOLORYPAR! : iy
cade (“bipush 0°);
code(*ireturn®):

]
¥

i g S it i -

ot Fusctloufode exionds Function. Sy CompleielBalods with Baslounr, Noalols, Hoslodn, bl £
dat fentec bid: Strisg. formala: ListlBtrirg). anlf: Seif): Ous = Seq.mmpt
EimlBuring] . Sucla: Dacls

det funle{h0: Bring, foreals

Rendel et al. (2014)

3
eaa, sld: Salf3: Cut =
ey

How to Compose Ecosystems?

* Common target language helps

How to Compose Static Semantics

Tillmann Rendel, Klaus Ostermann, Christian Hofer.
Typed Self-Representation.
In Proceedings of the International Conference on

Programming Language Design and Implementation, June
2009.

Typed Self-Representation

Can we embed
a statically typed language
into itself?

Rendel et al. (2009)

Type-Safe Self-Evaluation

<T> T eval(expr: Expr<T>)

eval : forall T. Expr T —T

Rendel et al. (2009)

The Expr<T> Family of Types

* Representation
quote(t) : Expr<T> ifandonlyif t:T

 Adequacy

expr: Expr<T> implies t:T with quote(expr)=t exists

* First Class Interpretations
there are operations on Expr<T> values

* Self Interpretation
t: T implies eval<T>(quote(t)) ==t

* Reflection
quote(t) exhibits the intensional structure of t

Rendel et al. (2009)

The Language Fg,

e Pure Lambda Calculus

* Terms, Types, and Kinds
* Terms are classified by Types
* Types are classified by Kinds

* Kinds are classified by Kinds, too

* Expr<T> is implemented with Church encoding

Rendel et al. (2009)

Related Work

Metacircularity in the Polymorphic Lambda-Calculus
by Frank Pfenning and Peter Lee.
In Theoretical Computer Science 89(1), 1991.

Typed Self-Representation
by Tillmann Rendel, Klaus Ostermann and Christian Hofer.
In Proc. of PLDI, 20009.

Typed Self-Interpretation by Pattern Matching

by Barry Jay and Jens Palsberg.
In Proc. of ICFP, 2011.

Self-Representation in Girard's System U.
by Matt Brown and Jens Palsberg.
To appear in Proc. of POPL, 2015.

Rendel et al. (2009)

How to Design Languages?

Paolo G. Giarrusso, Tillmann Rendel, Klaus Ostermann,

Eric Walkingshaw.

Formal Semantics as a Language Designer’s Toolbox: A case for
semantics-inspired language design.

Presentation at Workshop on Domain-Specific Language Design and
Implementation, October 2014

How can a

programmer/
language designer

learn to design languages that are

elegant and usable?

Giarrusso et al. (2014)

Formal Semantics

* Semanticists know a lot about languages
(it's their job)

* Semanticists know a lot about elegance
(they are mathematicians)

 Mathematical elegance has pragmatic advantages

Elegant = powerful and simple, less to learn

Giarrusso et al. (2014)

Can formal semantics guide a
programmer/language designer
towards an elegant and usable design?

Giarrusso et al. (2014)

Problem 1

e Problem: Formal semantics is a lot of work.

* Proposed Solution: Don't actually formalize the
semantics, just let the insights of formal
semantics guide your design process.

Giarrusso et al. (2014)

Problem 2

* Problem: The language of the semanticists is not
understandable to the working
programmer/language designers

* Proposed Solution: Package the insights from
formal semantics as language design patterns.

Giarrusso et al. (2014)

Language Design Patterns

* Patterns work for software design,
we want to adapt them for language design

* Use terms that make sense to the working
programmer/language designer

Giarrusso et al. (2014)

name Bound & Binding Occurrences
problem How to structure names?

solution Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

effects YOU can reason about the naming
structure of a program in terms of
,this name here is bound there”

Giarrusso et al. (2014)

name Bound & Binding Occurrences

pro

soli

name Lexical Scoping

problem Which bound occurrence refers to
which binding occurrence?

solution All bound occurrences in a
continuous region of the source file
bind to the same binding
occurrence.

effects YOU can reason about the binding
structure statically.

Giarrusso et al. (2014)

name Bound & Binding Occurrences

pro

soli

name Lexical Scoping

pro. name Associated Scoping

problem Which bound occurrence refers to
solt which binding occurrence?

solution Attach the scoping information to

ej a domain-specific entity in your

language design.

e effects Your binding structure supports

. your domain integration.

Giarrusso et al. (2014)

name Meaning
problem How to specify the semantics?
solution Map every program to its meaning.

effects Allows to identify programs that
mean the same but work
differently internally.

Giarrusso et al. (2014)

name Meaning

pro| name Simple Meaning

sonproblem How to structure the meaning?

solution Choose the simplest thing that

ej]
works.

effects Carefully choosing the meaning
helps you focus your design on
your domain.

Giarrusso et al. (2014)

name Meaning
name Simple Meaning

pro

[|pro name Recursive Meaning
SOoly |

<ol problem How to define the meaning
e []
] mapping?

¢ solution Map each phrase of the program to
its meaning.

effects You can explain what a part of a
program means.

Giarrusso et al. (2014)

name Meaning

pro

soliP

ef

name Simple Meaning

name Recursive Meaning
name Compositional Meaning

ro

soli PTO
problem How to define the meaning

o) sol mapping?

solution Define the meaning of a phrase in
terms of the meaning of its

ef
subphrases.

effects The meaning of a phrase is the
phrase's interface. Allow code

Giarrussc moving without changing meaning.

name Type Structure
problem How to structure the primitives?

solution Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

effects Easier to not forget primitives.
Structuring principle also for
documentation.

Giarrusso et al. (2014)

name Type Structure

pro| name Constructor

sojproblem Which operations for a type?

solution Provide constructors for making
new values of a type.

effects User programs can create values of
ef the type.

Giarrusso et al. (2014)

name Type Structure
name Constructor

pro

name Destructor
soldPT0

soyproblem Which operations for a type?

solution Provide destructors for getting

ef information out of values of a type.

f effects User programs can use values of
the type.

Giarrusso et al. (2014)

name Type Structure
name Constructor
name Destructor

pro

ro

sollP ; .
Name Information Preservation
problem How to balance constructors and
destructors?

ef [SOlution Provide enough destructors to get
| all information out of an
constructed value.

Provide enough constructors to
recreate a destructed value.

Giarrussd effects No identity and no secrets.

Language Design Patterns ...

* guide the design process
(,think of all constructors")

* structure the design
(,separate constructors and destructors")

* highlight design choices

(,which kind of scoping is appropriate?)
° explain eftects (,user programs can ..

* Interact (,if a compositional meaning is a phrase's interface, a
simple meaning is a better interface")

Giarrusso et al. (2014)

Conclusion
Computer languages matter
There are many computer languages

Package domain knowledge in languages

Structure component interfaces as languages

Reuse language design concepts

Reuse language implementation artifacts

Conclusion

Computer languages matter

There are many computer languages

Package domain knowledge in languages

Structure component interfaces as languages

Reuse language design concepts

Reuse language implementation artifacts

Thanks

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82

